Mostrar el registro sencillo del ítem
dc.contributor.author
Borredon, Claudia
dc.contributor.author
Miccio, Luis Alejandro
dc.contributor.author
Cerveny, Silvina
dc.contributor.author
Schwartz, Gustavo A.
dc.date.available
2025-01-02T10:44:30Z
dc.date.issued
2023-06
dc.identifier.citation
Borredon, Claudia; Miccio, Luis Alejandro; Cerveny, Silvina; Schwartz, Gustavo A.; Characterising the glass transition temperature-structure relationship through a recurrent neural network; Elsevier Science; Journal of Non-Crystalline Solids: X; 18; 6-2023; 1-8
dc.identifier.issn
2590-1591
dc.identifier.uri
http://hdl.handle.net/11336/251445
dc.description.abstract
Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Glass Transition temperature
dc.subject
Machine learning
dc.subject
Recurrent neural network
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Characterising the glass transition temperature-structure relationship through a recurrent neural network
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-26T14:13:42Z
dc.journal.volume
18
dc.journal.pagination
1-8
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Borredon, Claudia. No especifíca;
dc.description.fil
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
dc.description.fil
Fil: Cerveny, Silvina. No especifíca;
dc.description.fil
Fil: Schwartz, Gustavo A.. No especifíca;
dc.journal.title
Journal of Non-Crystalline Solids: X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590159123000377
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.nocx.2023.100185
Archivos asociados