Mostrar el registro sencillo del ítem

dc.contributor.author
Borredon, Claudia  
dc.contributor.author
Miccio, Luis Alejandro  
dc.contributor.author
Cerveny, Silvina  
dc.contributor.author
Schwartz, Gustavo A.  
dc.date.available
2025-01-02T10:44:30Z  
dc.date.issued
2023-06  
dc.identifier.citation
Borredon, Claudia; Miccio, Luis Alejandro; Cerveny, Silvina; Schwartz, Gustavo A.; Characterising the glass transition temperature-structure relationship through a recurrent neural network; Elsevier Science; Journal of Non-Crystalline Solids: X; 18; 6-2023; 1-8  
dc.identifier.issn
2590-1591  
dc.identifier.uri
http://hdl.handle.net/11336/251445  
dc.description.abstract
Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Glass Transition temperature  
dc.subject
Machine learning  
dc.subject
Recurrent neural network  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Characterising the glass transition temperature-structure relationship through a recurrent neural network  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-26T14:13:42Z  
dc.journal.volume
18  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Borredon, Claudia. No especifíca;  
dc.description.fil
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Cerveny, Silvina. No especifíca;  
dc.description.fil
Fil: Schwartz, Gustavo A.. No especifíca;  
dc.journal.title
Journal of Non-Crystalline Solids: X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590159123000377  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.nocx.2023.100185