Artículo
Permeability in barrier membranes: Comparison between experiments, direct calculations, and analytical models
Fecha de publicación:
06/2023
Editorial:
John Wiley & Sons
Revista:
Polymer Engineering and Science
ISSN:
0032-3888
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper compares direct calculations, experimental data and analytical models in materials with controlled barrier microstructure. Confocal Raman was used to follow mass transport of a penetrant, hexadecanol (HDOL), through the barrier structure. produced by carving holes in specific positions and orientations in a polydimethylsiloxane (PDMS) matrix. Finite element method (FEM) was used to predict maps of HDOL concentration around the obstacles, which were directly compared to Raman data. Effective diffusion coefficients were obtained in homogeneized microstructures of slender obstacles in diluted and semi-concentrated obstacles regimes. Results were compared with predictions of simple analytical models: Nielsen, Lape, those derived from the ideas of Bharadwaj (Greco; Greco and Maffezzolli), and those developed from FEM simulations (Minelli et al. and Dondero et al.). For the first time, predictions of these widely used analytical models could be tested against wellcontrolled barrier membranes. The influence of obstacle orientation, size polydispersity and eventual aggregation, all features occurring in real polymeric nanocomposites are analyzed. Some limitations about the use of simple analytical models to interpret permeability data in real nanocomposites are discussed.
Palabras clave:
Barrier properties
,
Diffusion
,
Modeling
,
Permeability
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Demoor, Rodrigo Ariel; Tomba, Juan Pablo; Permeability in barrier membranes: Comparison between experiments, direct calculations, and analytical models; John Wiley & Sons; Polymer Engineering and Science; 63; 8; 6-2023; 2385-2396
Compartir
Altmétricas