Mostrar el registro sencillo del ítem

dc.contributor.author
Panizo, Angel  
dc.contributor.author
Bello Orgaz, Gema  
dc.contributor.author
Carnero, Mercedes del Carmen  
dc.contributor.author
Hernández, José  
dc.contributor.author
Sanchez, Mabel Cristina  
dc.contributor.author
Camacho, David  
dc.contributor.other
Yin, Hujun  
dc.contributor.other
Camacho, David  
dc.contributor.other
Novais, Paulo  
dc.contributor.other
Tallón Ballesteros, Antonio J.  
dc.date.available
2024-12-26T13:48:39Z  
dc.date.issued
2018  
dc.identifier.citation
An Artificial Bee Colony Algorithm for Optimizing the Design of Sensor Networks; 19th International Conference on Intelligent Data Engineering and Automated Learning; Madrid; España; 2018; 1-9  
dc.identifier.isbn
978-3-030-03495-5  
dc.identifier.uri
http://hdl.handle.net/11336/251310  
dc.description.abstract
The sensor network design problem (SNDP) consists of theselection of the type, number and location of the sensors to measure aset of variables, optimizing a specified criteria, and simultaneously satisfying the information requirements. This problem is multimodal andinvolves several binary variables, therefore it is a complex combinatorialoptimization problem. This paper presents a new Artificial Bee Colony(ABC) algorithm designed to solve high scale designs of sensor networks.For this purpose, the proposed ABC algorithm has been designed tooptimize binary structured problems and also to handle constraints tofulfil information requirements. The classical version of the ABC algorithm was proposed for solving unconstrained and continuous optimization problems. Several extensions have been proposed that allow theclassical ABC algorithm to work on constrained or on binary optimization problems. Therefore the proposed approach is a new version of theABC algorithm that combines the binary and constrained optimizationextensions to solve the SNDP. Finally the new algorithm is tested usingdifferent systems of incremental size to evaluate its quality, robustness, and scalability.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.source
https://link.springer.com/bookseries/558  
dc.subject
ARTIFICIAL BEE COLONY  
dc.subject
SENSOR NETWORK DESIGN  
dc.subject
COMBINATORIAL OPTIMIZATION  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An Artificial Bee Colony Algorithm for Optimizing the Design of Sensor Networks  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-04-21T18:09:17Z  
dc.journal.volume
11315  
dc.journal.pagination
1-9  
dc.journal.pais
Suiza  
dc.journal.ciudad
Cham  
dc.description.fil
Fil: Panizo, Angel. Universidad Autónoma de Madrid; España  
dc.description.fil
Fil: Bello Orgaz, Gema. Universidad Autónoma de Madrid; España  
dc.description.fil
Fil: Carnero, Mercedes del Carmen. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina  
dc.description.fil
Fil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina  
dc.description.fil
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Camacho, David. Universidad Autónoma de Madrid; España  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-030-03496-2_35  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-030-03496-2_35  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
19th International Conference on Intelligent Data Engineering and Automated Learning  
dc.date.evento
2018-11-09  
dc.description.ciudadEvento
Madrid  
dc.description.paisEvento
España  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Universidad Autónoma de Madrid  
dc.source.libro
Intelligent Data Engineering and Automated Learning 2018: 19th International Conference, Madrid, Spain, November 21–23, 2018, Proceedings, Part II  
dc.date.eventoHasta
2018-11-09  
dc.type
Congreso