Mostrar el registro sencillo del ítem
dc.contributor.author
Panizo, Angel
dc.contributor.author
Bello Orgaz, Gema
dc.contributor.author
Carnero, Mercedes del Carmen
dc.contributor.author
Hernández, José
dc.contributor.author
Sanchez, Mabel Cristina
dc.contributor.author
Camacho, David
dc.contributor.other
Yin, Hujun
dc.contributor.other
Camacho, David
dc.contributor.other
Novais, Paulo
dc.contributor.other
Tallón Ballesteros, Antonio J.
dc.date.available
2024-12-26T13:48:39Z
dc.date.issued
2018
dc.identifier.citation
An Artificial Bee Colony Algorithm for Optimizing the Design of Sensor Networks; 19th International Conference on Intelligent Data Engineering and Automated Learning; Madrid; España; 2018; 1-9
dc.identifier.isbn
978-3-030-03495-5
dc.identifier.uri
http://hdl.handle.net/11336/251310
dc.description.abstract
The sensor network design problem (SNDP) consists of theselection of the type, number and location of the sensors to measure aset of variables, optimizing a specified criteria, and simultaneously satisfying the information requirements. This problem is multimodal andinvolves several binary variables, therefore it is a complex combinatorialoptimization problem. This paper presents a new Artificial Bee Colony(ABC) algorithm designed to solve high scale designs of sensor networks.For this purpose, the proposed ABC algorithm has been designed tooptimize binary structured problems and also to handle constraints tofulfil information requirements. The classical version of the ABC algorithm was proposed for solving unconstrained and continuous optimization problems. Several extensions have been proposed that allow theclassical ABC algorithm to work on constrained or on binary optimization problems. Therefore the proposed approach is a new version of theABC algorithm that combines the binary and constrained optimizationextensions to solve the SNDP. Finally the new algorithm is tested usingdifferent systems of incremental size to evaluate its quality, robustness, and scalability.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.source
https://link.springer.com/bookseries/558
dc.subject
ARTIFICIAL BEE COLONY
dc.subject
SENSOR NETWORK DESIGN
dc.subject
COMBINATORIAL OPTIMIZATION
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
An Artificial Bee Colony Algorithm for Optimizing the Design of Sensor Networks
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-04-21T18:09:17Z
dc.journal.volume
11315
dc.journal.pagination
1-9
dc.journal.pais
Suiza
dc.journal.ciudad
Cham
dc.description.fil
Fil: Panizo, Angel. Universidad Autónoma de Madrid; España
dc.description.fil
Fil: Bello Orgaz, Gema. Universidad Autónoma de Madrid; España
dc.description.fil
Fil: Carnero, Mercedes del Carmen. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
dc.description.fil
Fil: Hernández, José. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
dc.description.fil
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Camacho, David. Universidad Autónoma de Madrid; España
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-030-03496-2_35
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-030-03496-2_35
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Congreso
dc.description.nombreEvento
19th International Conference on Intelligent Data Engineering and Automated Learning
dc.date.evento
2018-11-09
dc.description.ciudadEvento
Madrid
dc.description.paisEvento
España
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Universidad Autónoma de Madrid
dc.source.libro
Intelligent Data Engineering and Automated Learning 2018: 19th International Conference, Madrid, Spain, November 21–23, 2018, Proceedings, Part II
dc.date.eventoHasta
2018-11-09
dc.type
Congreso
Archivos asociados