Mostrar el registro sencillo del ítem
dc.contributor.author
Otero, Federico

dc.contributor.author
Araneo, Diego Christian

dc.date.available
2024-12-26T10:28:58Z
dc.date.issued
2023-09
dc.identifier.citation
Otero, Federico; Araneo, Diego Christian; Synoptic fingerprints of Zonda wind from a statistical prediction model; John Wiley & Sons Ltd; International Journal of Climatology; 43; 15; 9-2023; 6946-6962
dc.identifier.issn
0899-8418
dc.identifier.uri
http://hdl.handle.net/11336/251202
dc.description.abstract
Zonda wind is a typical downslope windstorm over the eastern slopes of the Central Andes in Argentina, which produces extremely warm and dry conditions and has substantial socioeconomic impacts. In this study, we propose a new statistical model for Zonda prediction based on the “synoptic fingerprints” of atmospheric diagnostic variables from ERA5. The model combines principal component analysis (PCA) and logistic regression to establish a relationship between the observed occurrence and the PCA loading component of a predictor variable. This approach enables us to determine the probability of Zonda occurrence at selected stations and identify the synoptic structure features (fingerprints) associated with Zonda events. The obtained fields successfully discriminate between Zonda and non-Zonda events, suggesting that the available information in the reanalysis data is sufficient for predicting the presence of Zonda. The synoptic fingerprints generated by the model reveal a cross-barrier pressure gradient resulting from a negative geopotential height anomaly at low levels. The cross-barrier flow remains unimpeded by the Andes, leading to forced vertical motions on the windward side, accompanied by cooling and precipitation. On the lee side, sinking motions, warming and drying are observed, further facilitated by favourable mid- and upper-level conditions that establish the Zonda wind. The model performs comparably to previous research, with the best results achieved using low-level variables as predictors. Key performance measures, including the area under the receiver operating curve (ROC) (AUC) of 0.9468 and a Brier score lower than 0.1, demonstrate the model´s effectiveness. Using a 0.5 threshold, the accuracy, F1 score and correct alarm ratio (CAR) all exceed 88%, with a probability of detection (POD) higher than 90%. Studies on this type of downslope windstorm are scarce in South America, making this work a significant contribution to understanding synoptic-scale atmospheric structures associated with Zonda occurrences.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Zonda wind
dc.subject
Foehn
dc.subject
Downslope windstorm
dc.subject
Statistical Models
dc.subject.classification
Meteorología y Ciencias Atmosféricas

dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Synoptic fingerprints of Zonda wind from a statistical prediction model
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-12-17T17:40:22Z
dc.journal.volume
43
dc.journal.number
15
dc.journal.pagination
6946-6962
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Otero, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
dc.description.fil
Fil: Araneo, Diego Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
dc.journal.title
International Journal of Climatology

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.8244
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/joc.8244
Archivos asociados