Mostrar el registro sencillo del ítem

dc.contributor.author
Perri, Daiana Vanesa  
dc.contributor.author
Hurtado, Santiago Ignacio  
dc.contributor.author
Bruzzone, Octavio Augusto  
dc.contributor.author
Easdale, Marcos Horacio  
dc.date.available
2024-12-17T14:20:14Z  
dc.date.issued
2023-11  
dc.identifier.citation
Perri, Daiana Vanesa; Hurtado, Santiago Ignacio; Bruzzone, Octavio Augusto; Easdale, Marcos Horacio; Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions; Springer Wien; Theory & Application Climatology; 155; 3; 11-2023; 1847-1856  
dc.identifier.issn
0177-798X  
dc.identifier.uri
http://hdl.handle.net/11336/250838  
dc.description.abstract
The development of monitoring and early warning tools for environmental and agricultural applications is highly restricted in scarce climate data regions. In particular, precipitation data is a key input for several environmental monitoring tools on which decision-makers rely. However, precipitation records are collected by rain gauge stations, but these are frequently inhomogeneous and scarce in some regions of the world, especially in South America and Africa. In such cases, the use of alternative precipitation data sources is necessary to correctly assess its spatial and temporal variations. Therefore, we evaluate the possibility of using the ERA5 data with different automatic enhancement methods. Three adjustment approaches were evaluated in Northern Patagonia, which is an example of a scarce data area: (1) modifying the ERA5 daily data with three different regression models, one depending on lag and lead days, a distributed lag model, and a simple linear regression model, (2) detecting the lower time window of precipitation accumulation that can represent the observed precipitation variations, and (3) determining a window size and cut-off frequency of a low-pass filter to have data that represent well the low-frequency variation. The lag-distributed models improved the ERA5 data precipitation. A combination of approaches 1 and 2 showed the best performance for enhancing the ERA5 precipitation data, with a minimum of 6-day time window accumulation. However, this enhanced performance is not spatially homogeneous and it is poor in the northeastern region. This tool allows the use of data from ERA5 in sites where daily precipitation input data is scarce or inaccurate for different environmental and agricultural applications aimed at offering permanent and updated information, such as monitoring drought, flood, wildfire risk, or pest outbreaks. These applications are key to reducing ecosystem, production, and infrastructure loss in regions where climate data is a strong restriction.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Wien  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Precipitation  
dc.subject
ERA5  
dc.subject
Drought  
dc.subject
Flood  
dc.subject
Wildfire-risk  
dc.subject
Early warning  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Optimal automatic enhanced ERA5 daily precipitation data for environmental and agricultural monitoring tools in scarce data regions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-26T10:26:52Z  
dc.identifier.eissn
1434-4483  
dc.journal.volume
155  
dc.journal.number
3  
dc.journal.pagination
1847-1856  
dc.journal.pais
Austria  
dc.journal.ciudad
Viena  
dc.description.fil
Fil: Perri, Daiana Vanesa. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.journal.title
Theory & Application Climatology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00704-023-04730-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00704-023-04730-8