Mostrar el registro sencillo del ítem

dc.contributor.author
Barrera Guisasola, Exequiel Ernesto  
dc.contributor.author
Pantano Gutierrez, Sergio Fabian  
dc.contributor.other
Wang, Yong  
dc.contributor.other
Zhou, Ruhong  
dc.date.available
2024-12-17T09:51:11Z  
dc.date.issued
2023  
dc.identifier.citation
Barrera Guisasola, Exequiel Ernesto; Pantano Gutierrez, Sergio Fabian; Simulating Transmembrane Proteins with the Coarse-Grained SIRAH Force Field: Tips and Tricks for Setting Up and Running in AMBER; AIP Publishing Books; 2023; 67-86  
dc.identifier.isbn
978-0-7354-2527-9  
dc.identifier.uri
http://hdl.handle.net/11336/250701  
dc.description.abstract
Biological membranes constitute enormously complex objects formed of hundreds to thousands of different species of lipids in a crowded mix with a similarly massive variety of proteins, continuously exchanging information among themselves (Harayama and Riezman, 2018). Such interactions are crucial to regulate protein function and sorting into different subcellular organelles (Chattopadhyay, 2017). Indeed, our vision of biological membranes has evolved from a passive role in the fluid mosaic model (Singer and Nicolson, 1972) to a highly complex and tightly regulated hub of interactions and signaling processes (Goñi, 2014).In parallel, advances in molecular dynamics (MD) simulations nowadays provide a perspective on the structure and dynamics of membrane systems that is difficult to achieve using experimental techniques. State-of-the-art MD can actually breach resolution gaps linking the nanoscales with the mesoscales and achieve an astonishing complexity level (Chavent et al., 2016; Marrink et al., 2019; and Pezeshkian and Marrink, 2021).Nevertheless, the elevated cost of fully atomistic descriptions has prompted the development of coarse-grained (CG) representations that reduce the computational burden while keeping an acceptable resolution in the intermolecular interactions that determine the behavior of the system. Many CG models have been reported in the literature (Ingólfsson et al., 2014). Among them, CG models that retain molecular details at a single residue level are particularly interesting since they can matchthe resolution achievable by experimental techniques, providing valuable and verifiable insights on biologically relevant systems.This chapter illustrates how to perform MD simulations of membrane proteins using the SIRAH force field for CG and multiscale simulations using the AMBER package (https://ambermd.org). SIRAH (Southamerican Initiative for a Rapid and Accurate Hamiltonian, https://www.sirahff.com) constitutes one of the most complete CG force fields reported in the literature, with topologies and parameters for most biological molecules.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
AIP Publishing Books  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Biological membranes  
dc.subject
Protein  
dc.subject
Vision  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Simulating Transmembrane Proteins with the Coarse-Grained SIRAH Force Field: Tips and Tricks for Setting Up and Running in AMBER  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2024-11-29T13:53:55Z  
dc.journal.pagination
67-86  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Barrera Guisasola, Exequiel Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentina  
dc.description.fil
Fil: Pantano Gutierrez, Sergio Fabian. Instituto Pasteur de Montevideo; Uruguay  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/books/monograph/137/chapter-abstract/58880922/Simulating-Transmembrane-Proteins-with-the-Coarse  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1063/9780735425279_003  
dc.conicet.paginas
245  
dc.source.titulo
A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of Biomolecules