Mostrar el registro sencillo del ítem

dc.contributor.author
Clyne, John  
dc.contributor.author
Mininni, Pablo Daniel  
dc.contributor.author
Norton, Alan  
dc.date.available
2015-10-13T20:35:11Z  
dc.date.issued
2013-04  
dc.identifier.citation
Clyne, John; Mininni, Pablo Daniel; Norton, Alan; Physically based feature tracking for CFD data; IEEE Computer Society; IEEE Transactions on Visualization and Computer Graphics; 19; 6; 4-2013; 1020-1033  
dc.identifier.issn
1077-2626  
dc.identifier.uri
http://hdl.handle.net/11336/2503  
dc.description.abstract
Numerical simulations of turbulent fluid flow in areas ranging from solar physics to aircraft design are dominated by the presence of repeating patterns known as coherent structures. These persistent features are not yet well understood, but are believed to play an important role in the dynamics of turbulent fluid motion, and are the subject of study across numerous scientific and engineering disciplines. To facilitate their investigation a variety of techniques have been devised to track the paths of these structures as they evolve through time. Heretofore all such feature tracking methods have largely ignored the physics governing the motion of these objects at the expense of error prone and often computationally expensive solutions. In this paper we present a feature path prediction method that is based on the physics of the underlying solutions to the equations of fluid motion. To the knowledge of the authors the accuracy of these predictions is superior to methods reported elsewhere. Moreover, the precision of these forecasts for many applications is sufficiently high to enable the use of only the most rudimentary and inexpensive forms of correspondence matching. Finally, our method is easy to implement, and computationally inexpensive to execute, making it well suited for very high resolution simulations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IEEE Computer Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CFD  
dc.subject
FEATURE TRACKING  
dc.subject
FLOW VISUALIZATION  
dc.subject
TIME-VARYING DATA  
dc.subject.classification
Física de los Fluidos y Plasma  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Physically based feature tracking for CFD data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
19  
dc.journal.number
6  
dc.journal.pagination
1020-1033  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Clyne, John. National Center for Atmospheric Research; Estados Unidos de América;  
dc.description.fil
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Física del Sur; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.description.fil
Fil: Norton, Alan. National Center for Atmospheric Research; Estados Unidos de América;  
dc.journal.title
IEEE Transactions on Visualization and Computer Graphics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D6269875%26userType%3Dinst&denyReason=-134&arnumber=6269875&productsMatched=null&userType=inst  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TVCG.2012.171