Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Analysis and interpretation of Deep Convolutional Features using Self-Organizing Maps

Título del libro: Innovations in Machine and Deep Learning

Comas, Diego SebastiánIcon ; Meschino, Gustavo Javier; Amalfitano, AgustínIcon ; Ballarin, Virginia Laura
Fecha de publicación: 2023
Editorial: Springer
ISBN: 978-3-031-40687-4
Idioma: Inglés
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Deep learning has defined a new paradigm for data analysis. In image processing, Convolutional Neural Networks (CNN) have a vast number of appli-cations and do not require prior extraction of features as these are “learned” di-rectly from training images. The interpretation about how a CNN works is an open problem and any method for interpreting the features extracted from CNN can lead to remove the black-box concept significant contribution to the field machine-learning. In the present chapter, a SOM-based approach for analysis and interpretation of features extracted from CNN is proposed. Main characteristics are: i) CNN are trained from an initial image dataset with different sets of hy-perparameters; ii) new datasets containing different representations of the initial dataset are generated and then analyzed using SOM, visualization tools, and qual-ity measures; iii) it is possible to select features suitable for classification and to describe complexity and diversity in the classes and to extract additional infor-mation about the images in the training datasets. An application example consid-ering chest X-ray images for classification of pneumonia is analyzed, being to identify good features from CNN from scratch and to give some interpretation from them both in the classification of normal vs pneumonia, and in viral pneu-monia vs bacterial pneumonia.
Palabras clave: DEEP-LEARNING , CONVOLUTIONAL NEURAL NETWORKS , FEATURES INTERPRETATION , SELF-ORGANIZING MAPS
Ver el registro completo
 
Archivos asociados
Tamaño: 378.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/250126
URL: https://link.springer.com/chapter/10.1007/978-3-031-40688-1_10
DOI: http://dx.doi.org/10.1007/978-3-031-40688-1_10
Colecciones
Capítulos de libros(ICYTE)
Capítulos de libros de INSTITUTO DE INVESTIGACIONES CIENTIFICAS Y TECNOLOGICAS EN ELECTRONICA
Citación
Comas, Diego Sebastián; Meschino, Gustavo Javier; Amalfitano, Agustín; Ballarin, Virginia Laura; Analysis and interpretation of Deep Convolutional Features using Self-Organizing Maps; Springer; 134; 2023; 213-229
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES