Mostrar el registro sencillo del ítem

dc.contributor.author
Zunino, Luciano José  
dc.contributor.author
Soriano, Miguel Cornelles  
dc.date.available
2024-12-09T18:00:17Z  
dc.date.issued
2023-12-06  
dc.identifier.citation
Zunino, Luciano José; Soriano, Miguel Cornelles; Quantifying the diversity of multiple time series with an ordinal symbolic approach; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 108; 6; 6-12-2023; 65302-65302  
dc.identifier.issn
2470-0045  
dc.identifier.uri
http://hdl.handle.net/11336/249934  
dc.description.abstract
The main motivation of this paper is to introduce the ordinal diversity, a symbolic tool able to quantify the degree of diversity of multiple time series. Analytical, numerical, and experimental analyses illustrate the utility of this measure to quantify how diverse, from an ordinal perspective, a set of many time series is. We have shown that ordinal diversity is able to characterize dynamical richness and dynamical transitions in stochastic processes and deterministic systems, including chaotic regimes. This ordinal tool also serves to identify optimal operating conditions in the machine learning approach of reservoir computing. These results allow us to envision potential applications for the handling and characterization of large amounts of data, paving the way for addressing someof the most pressing issues facing the current big data paradigm.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MULTIVARIATE TIME SERIES  
dc.subject
ORDINAL MAPPING  
dc.subject
DIVERSITY  
dc.subject
DINAMICAL TRANSITIONS  
dc.subject
BIG DATA  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Quantifying the diversity of multiple time series with an ordinal symbolic approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-25T10:13:03Z  
dc.identifier.eissn
2470-0053  
dc.journal.volume
108  
dc.journal.number
6  
dc.journal.pagination
65302-65302  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Maryland  
dc.description.fil
Fil: Zunino, Luciano José. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina  
dc.description.fil
Fil: Soriano, Miguel Cornelles. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; España  
dc.journal.title
Physical Review E: Statistical, Nonlinear and Soft Matter Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.108.065302  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.108.065302