Artículo
rcell2: Microscopy‐Based Cytometry in R
Méndez, Nicolás Agustín
; Beldorati, German Gabriel
; Constantinou, Andreas
; Colman Lerner, Alejandro Ariel
Fecha de publicación:
04/2023
Editorial:
Wiley
Revista:
Current Protocols
ISSN:
2691-1299
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This article describes a method for quantifying various cellular features (e.g., volume, curvature, total and sub-cellular fluorescence localization) of individual cells from sets of microscope images, and for tracking them over time-course microscopy experiments. One purposely defocused transmission image (sometimes referred to as bright-field or BF) is used to segment the image and locate each cell. Fluorescence images (one for each of the color channels or z-stacks to be analyzed) may be acquired by conventional wide-field epifluorescence or confocal microscopy. This method uses a set of R packages called rcell2. Relative to the original release of Rcell (Bush et al., 2012), the updated version bundles, into a single software suite, the image-processing capabilities of Cell-ID, offers new data analysis tools for cytometry, and relies on the widely used data analysis and visualization tools of the statistical programming framework R.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBYNE)
Articulos de INST.DE FISIOL., BIOL.MOLECULAR Y NEUROCIENCIAS
Articulos de INST.DE FISIOL., BIOL.MOLECULAR Y NEUROCIENCIAS
Citación
Méndez, Nicolás Agustín; Beldorati, German Gabriel; Constantinou, Andreas; Colman Lerner, Alejandro Ariel; rcell2: Microscopy‐Based Cytometry in R; Wiley; Current Protocols; 3; 4; 4-2023; 1-49
Compartir
Altmétricas