Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Sequences of resource monotones from modular Hamiltonian polynomials

Arias, Raúl EduardoIcon ; de Boer, Jan; Di Giulio, Giuseppe; Keski Vakkuri, Esko; Tonni, Erik
Fecha de publicación: 10/2023
Editorial: American Physical Society
Revista: Physical Review Research
e-ISSN: 2643-1564
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

We introduce two infinite sequences of entanglement monotones, which are constructed from expectation values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an infinite sequence of “Landauer inequalities” for the work cost, bounded by linear combinations of expectation values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative quantifiers that are monotonic in more general processes, namely those involving so-called σ majorization with respect to a fixed point full rank state σ; such quantifiers are called resource monotones. As an application to thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs of states in discretized theories at criticality and study how majorization depends on the size of the bipartition with respect to the size of the entire chain.
Palabras clave: QUANTUM INFORMATION , ENTANGLEMENT MONOTONE , MODULAR HAMILTONIAN , SCHUR CONCAVITY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 748.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/249612
URL: https://link.aps.org/doi/10.1103/PhysRevResearch.5.043082
DOI: http://dx.doi.org/10.1103/PhysRevResearch.5.043082
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Arias, Raúl Eduardo; de Boer, Jan; Di Giulio, Giuseppe; Keski Vakkuri, Esko; Tonni, Erik; Sequences of resource monotones from modular Hamiltonian polynomials; American Physical Society; Physical Review Research; 5; 4; 10-2023; 043082, 1-26
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES