Mostrar el registro sencillo del ítem
dc.contributor.author
Suarez, Franco Marcelo
dc.contributor.author
Giannini Kurina, Franca
dc.contributor.author
Bruno, Cecilia Ines
dc.contributor.author
Rodriguez Pardina, Patricia
dc.contributor.author
Giménez, María de la Paz
dc.contributor.author
Reyna, Pablo Gastón
dc.contributor.author
Torrico, Karina
dc.contributor.author
Balzarini, Monica Graciela
dc.date.available
2024-12-03T13:35:10Z
dc.date.issued
2021
dc.identifier.citation
Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas; 50ª Jornadas Argentinas de Informática; Argentina; 2021; 2019-219
dc.identifier.issn
2525-0949
dc.identifier.uri
http://hdl.handle.net/11336/249280
dc.description.abstract
La alta dimensionalidad y la correlación entre las múltiples variables candidatas a predictoras para la estimación de un modelo estadístico capaz de predecir la enfermedad de un cultivo en función del ambiente determina la necesidad de recurrir a herramientas metodológicas estadísticas que permitan reducir la dimensionalidad. El objetivo de este trabajo fue comparar el desempeño de métodos de selección de variables en su capacidad para detectar variables climáticas relevantes para la construcción de un modelo logístico que será usado para la predicción de probabilidad de presencia de enfermedad en un patosistema. En este trabajo se compararon tres métodos de selección de variables: Método de Filtrado (F), algoritmo genético (AG) y Boruta (B), en tres patosistemas (MRCV en maíz, Begomovirus en poroto y en soja). Las variables seleccionadas por cada método fueron sometidas a un análisis de componentes principales (ACP) para una nueva reducción de dimensión y obtención de variables sintéticas no correlacionadas. El desempeño de los métodos comparados se evaluó mediante la estimación de la precisión, especificidad y sensibilidad para un modelo lineal predictivo. B y F fueron más eficientes en la predicción. La combinación de estos con el ACP aumentó la eficiencia del modelo de predicción.
dc.format
application/pdf
dc.language.iso
spa
dc.publisher
Sociedad Argentina de Informática
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BORUTA
dc.subject
ALGORITMO GENETICO
dc.subject
FILTRADO
dc.subject
ANALSIS COMPONENTES PRINCIPALES
dc.subject.classification
Agronomía, reproducción y protección de plantas
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-09-21T15:04:31Z
dc.journal.pagination
2019-219
dc.journal.pais
Argentina
dc.journal.ciudad
Ciudad Autónoma de Buenos Aires
dc.description.fil
Fil: Suarez, Franco Marcelo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina
dc.description.fil
Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
dc.description.fil
Fil: Bruno, Cecilia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
dc.description.fil
Fil: Rodriguez Pardina, Patricia. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
dc.description.fil
Fil: Giménez, María de la Paz. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
dc.description.fil
Fil: Reyna, Pablo Gastón. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
dc.description.fil
Fil: Torrico, Karina. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
dc.description.fil
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://50jaiio.sadio.org.ar/pdfs/cai/CAI-28.pdf
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Nacional
dc.type.subtype
Jornada
dc.description.nombreEvento
50ª Jornadas Argentinas de Informática
dc.date.evento
2021-10-18
dc.description.paisEvento
Argentina
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Sociedad Argentina de Informática
dc.description.institucionOrganizadora
Instituto Nacional de Tecnología Agropecuaria
dc.source.revista
Anales de las 50 JAIIO
dc.date.eventoHasta
2021-10-29
dc.type
Jornada
Archivos asociados