Mostrar el registro sencillo del ítem
dc.contributor.author
Giannini Kurina, Franca
dc.contributor.author
Hang, Susana
dc.contributor.author
Macchiavelli, Raul
dc.contributor.author
Balzarini, Monica Graciela
dc.date.available
2024-12-03T13:03:55Z
dc.date.issued
2021
dc.identifier.citation
Bayesian spatial regression for digital mapping of soil herbicide dynamic; 4th València International Bayesian Analysis Summer School; Valencia; España; 2021; 32-32
dc.identifier.uri
http://hdl.handle.net/11336/249270
dc.description.abstract
Retention and dissipation processes lead the environmental dynamics of herbicides in soils. Landscape mapping of herbicide dynamic parameters related to sorption to soil (Kd) and degradation (half-life) is useful in environmental risk assessments. However, analytical quantification of herbicides in the soil matrix is too costly for being applied in extensive soil surveys. We developed and illustrated spatial regression models that use site-specific covariates of sampled soils as predictors of herbicide Kd and half-life at unsampled sites and allow us for digital soil mapping (DSM) of herbicide dynamics. First, we selected from a large set of potential environmental (edaphoclimatic and agricultural management) variables the explanatory site-covariates by coupling through machine learning techniques and predictive criteria. Second, we fitted a hierarchical Bayesian regression model (BR) using site-covariates and a random site effect to explain Kd and half-life variability observed in a sample of n=90 soils and n=60 soils fortified with Glyphosate and Atrazine herbicide molecules in lab conditions. Integrated Nested Laplace Approximation (INLA) with SPDE was used to estimate model parameters, hyperparameters and predict the dynamic parameters from the posterior distribution of predicted values at each site of the prediction grid. Thus, Kd and half-life were mapped at a regional grid through the predicted means and the projection of the spatial random effect. The target spatial domain was the Córdoba Province in central Argentina. Results from BR were compared with site-specific predicted values derived from Regression Kriging and Random Forest with kriged residuals models. The predictive performance was evaluated according to a design that varies the number of explanatory variables and the sample site used for model fitting. BR fitted with the selected environmental variables was similar against other methods on quantitative criteria of statistical performance (i.e., prediction errors, correlation between observed and predicted values, average explained variance) with the advantage of providing a direct quantification of the uncertainty of predicted values. In conclusion, the spatial Bayesian INLA-SPDE model strategy is suitable for mapping complex edaphic processes, such as herbicide sorption to soils and dissipation. BR models provide regression coefficients which enhance environmental interpretations and are easier to obtain site-specific prediction uncertainty measures.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Valencia Bayesian Research Group
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Ciencia de datos
dc.subject
Modelos Jerarquicos Bayesianos
dc.subject
INLA
dc.subject
SPDE
dc.subject.classification
Otras Agricultura, Silvicultura y Pesca
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Bayesian spatial regression for digital mapping of soil herbicide dynamic
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-09-21T15:12:45Z
dc.journal.pagination
32-32
dc.journal.pais
España
dc.journal.ciudad
Valencia
dc.description.fil
Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
dc.description.fil
Fil: Hang, Susana. Universidad Nacional de Cordoba. Facultad de Ciencias Agropecuarias. Departamento de Recursos Naturales. Cátedra de Edafologia; Argentina
dc.description.fil
Fil: Macchiavelli, Raul. Universidad de Puerto Rico; Puerto Rico
dc.description.fil
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bayesian.org/valencia-international-bayesian-summer-school-vibass4/
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Workshop
dc.description.nombreEvento
4th València International Bayesian Analysis Summer School
dc.date.evento
2021-07-12
dc.description.ciudadEvento
Valencia
dc.description.paisEvento
España
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Valencia Bayesian Research Group
dc.source.revista
4th València International Bayesian Analysis Summer School
dc.date.eventoHasta
2021-07-16
dc.type
Workshop
Archivos asociados