Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Toolkit to Examine Lifelike Language (TELL): An app to capture speech and language markers of neurodegeneration

García, Adolfo MartínIcon ; Jjohann, Fernando; Echegoyen, Raúl; Calcaterra, Cecilia; Riera, Pablo; Belloli, Laouen Mayal LouanIcon ; Carrillo, FacundoIcon
Fecha de publicación: 09/2023
Editorial: Springer
Revista: Behavior Research Methods
ISSN: 1554-3528
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Lingüística; Psicología

Resumen

Automated speech and language analysis (ASLA) is a promising approach for capturing early markers of neurodegenerative diseases. However, its potential remains underexploited in research and translational settings, partly due to the lack of a unified tool for data collection, encryption, processing, download, and visualization. Here we introduce the Toolkit to Examine Lifelike Language (TELL) v.1.0.0, a web-based app designed to bridge such a gap. First, we outline general aspects of its development. Second, we list the steps to access and use the app. Third, we specify its data collection protocol, including a linguistic profile survey and 11 audio recording tasks. Fourth, we describe the outputs the app generates for researchers (downloadable files) and for clinicians (real-time metrics). Fifth, we survey published findings obtained through its tasks and metrics. Sixth, we refer to TELL?s current limitations and prospects for expansion. Overall, with its current and planned features, TELL aims to facilitate ASLA for research and clinical aims in the neurodegeneration arena.
Palabras clave: ALSA , automated , speech , AI
Ver el registro completo
 
Archivos asociados
Tamaño: 1.517Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/249103
URL: https://link.springer.com/article/10.3758/s13428-023-02240-z
DOI: https://doi.org/10.3758/s13428-023-02240-z
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
García, Adolfo Martín; Jjohann, Fernando; Echegoyen, Raúl; Calcaterra, Cecilia; Riera, Pablo; et al.; Toolkit to Examine Lifelike Language (TELL): An app to capture speech and language markers of neurodegeneration; Springer; Behavior Research Methods; 9-2023; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES