Artículo
Extensional proofs in a propositional logic modulo isomorphisms
Fecha de publicación:
10/2023
Editorial:
Elsevier Science
Revista:
Theoretical Computer Science
ISSN:
0304-3975
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
System I is a proof language for a fragment of propositional logic where isomorphic propositions, such as A∧B and B∧A, or A⇒(B∧C) and (A⇒B)∧(A⇒C) are made equal. System I enjoys the strong normalisation property. This is sufficient to prove the existence of empty types, but not to prove the introduction property (every closed term in normal form is an introduction). Moreover, a severe restriction had to be made on the types of the variables in order to obtain the existence of empty types. We show here that adding η-expansion rules to System I permits to drop this restriction, and yields a strongly normalizing calculus with enjoying the introduction property.
Palabras clave:
SIMPLY TYPED LAMBDA CALCULUS
,
ISOMORPHISMS
,
LOGIC
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Díaz Caro, Alejandro; Dowek, Gilles; Extensional proofs in a propositional logic modulo isomorphisms; Elsevier Science; Theoretical Computer Science; 977; 10-2023; 1-17
Compartir
Altmétricas