Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Determination of grated hard cheese adulteration by digital image analysis and multivariate analysis

Visconti, Lucas GabrielIcon ; Martinez Vargas, StevenIcon ; Rodríguez, María SolIcon ; Di Anibal, Carolina VanesaIcon ; Delrieux, Claudio AugustoIcon
Fecha de publicación: 03/2023
Editorial: Elsevier
Revista: International Dairy Journal
ISSN: 0958-6946
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Hard-cheeses are foods with high commercial value, thus fraudulent practices are frequent and difficult to detect, which reduce hard-cheese quality and consequently, decreases nutritional value. This work presents a novel and feasible tool to identify the adulteration of grated-cheese with higher levels of additives than those permitted (cellulose and silicon dioxide), and foreign substances used to increase weight and volume (wheat-flour, wheat-semolina and sawdust). The methodology is based on the use of colour histograms (obtained from digital images) and multivariate classification analysis. Satisfactory results were obtained with support vector machines with average values of accuracy and sensitivity above 82%, as adulterated samples were discriminated from original (unadulterated) samples. The proposed screening methodology represents a fast, simple, reliable and affordable way to perform quality control of grated-cheeses to avoid food fraud and nutritional detriments of worldwide consumption foods such as hard-cheeses.
Palabras clave: Cheese adulteration , Digital image analysis , Multivariate analysis , Machine learning
Ver el registro completo
 
Archivos asociados
Tamaño: 1.762Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/249038
URL: https://www.sciencedirect.com/science/article/abs/pii/S0958694622002230
DOI: https://doi.org/10.1016/j.idairyj.2022.105539
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(IADO)
Articulos de INST.ARG.DE OCEANOGRAFIA (I)
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Visconti, Lucas Gabriel; Martinez Vargas, Steven; Rodríguez, María Sol; Di Anibal, Carolina Vanesa; Delrieux, Claudio Augusto; Determination of grated hard cheese adulteration by digital image analysis and multivariate analysis; Elsevier; International Dairy Journal; 138; 3-2023; 1-8
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES