Mostrar el registro sencillo del ítem

dc.contributor.author
Lou, Xiang Yang  
dc.contributor.author
Boada, Roberto  
dc.contributor.author
Yohai del Cerro, Lucía  
dc.contributor.author
Valiente, Manuel  
dc.date.available
2024-11-29T11:02:22Z  
dc.date.issued
2023-10  
dc.identifier.citation
Lou, Xiang Yang; Boada, Roberto; Yohai del Cerro, Lucía; Valiente, Manuel; Outstanding performance of hierarchical alumina microspheres for boron removal in the presence of competing ions; Elsevier; Journal of Water Process Engineering; 55; 10-2023; 1-8  
dc.identifier.issn
2214-7144  
dc.identifier.uri
http://hdl.handle.net/11336/248973  
dc.description.abstract
Developing efficient materials for the removal of boron from aqueous solutions is becoming an important task to overcome boron pollution. Herein, we present hierarchical alumina microspheres (HAM) as an outstanding adsorbent, synthesized via a microwave-assisted co-precipitation method. The microstructure, morphology, and textural characterization of the HAM particles carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) revealed hollow γ-Al2O3 particles with a porous dandelion-like shape and an average size of 1.5 μm. The analysis of the adsorption data indicated that the adsorption was homogeneous in a single layer and that chemical adsorption was the controlling step in the process. The adsorption capacity obtained at an initial concentration of 800 mg⋅L− 1 was 51.60 mg⋅g− 1, and the theoretically calculated maximum adsorption capacity using the Langmuir model was 138.50 g⋅g− 1, which outperforms previously reported adsorbents. The determination of thermodynamic parameters indicated that the adsorption is an exothermic and non-spontaneous process. The XPS spectra of HAM after adsorption indicated the formation of Al-O-B bonds. Of particular interest for industrial applications, the HAM adsorbent showed excellent selectivity for boron in the presence of competing cations or anions and at different ionic strengths. In addition, HAM maintained a high adsorption capacity after five consecutive adsorption/desorption cycles. These findings highlight the potential of HAM as a highly microporous material for boron removal in real industrial applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
BORON  
dc.subject
ADSORPTION  
dc.subject
HAM MICROSPHERES  
dc.subject
REGENERATION  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Outstanding performance of hierarchical alumina microspheres for boron removal in the presence of competing ions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-26T14:17:14Z  
dc.journal.volume
55  
dc.journal.pagination
1-8  
dc.journal.pais
España  
dc.journal.ciudad
Madrid  
dc.description.fil
Fil: Lou, Xiang Yang. Universitat Autònoma de Barcelona; España  
dc.description.fil
Fil: Boada, Roberto. Universitat Autònoma de Barcelona; España  
dc.description.fil
Fil: Yohai del Cerro, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universitat Autònoma de Barcelona; España  
dc.description.fil
Fil: Valiente, Manuel. Universitat Autònoma de Barcelona; España  
dc.journal.title
Journal of Water Process Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2214714423007389  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jwpe.2023.104218