Mostrar el registro sencillo del ítem

dc.contributor.author
Palombarini, Jorge Andrés  
dc.contributor.author
Barsce, Juan Cruz  
dc.contributor.author
Martínez, Ernesto Carlos  
dc.contributor.other
Hussain, Chaudhery Mustansar  
dc.contributor.other
Rossit, Daniel Alejandro  
dc.date.available
2024-11-28T13:53:50Z  
dc.date.issued
2023  
dc.identifier.citation
Palombarini, Jorge Andrés; Barsce, Juan Cruz; Martínez, Ernesto Carlos; Simulation-based generation of rescheduling knowledge using a cognitive architecture; Elsevier; 2023; 345-397  
dc.identifier.isbn
978-0-323-99208-4  
dc.identifier.uri
http://hdl.handle.net/11336/248915  
dc.description.abstract
No schedule can withstand the test of time. Unexpected disruptions are ubiquitous in manufacturing shop-floors and supply chains. Automating rescheduling decisions is thus essential to increase the type and level of autonomy used to respond timely to unplanned events. Problem-specific rescheduling knowledge is often scarce or unavailable. In this work, based on the Soar cognitive architecture, simulated transitions between schedule states due to repair operators are used for generating and compiling knowledge to respond reactively to unforeseen events generated by internal and external factors such as machine breakdowns, rush orders, material shortages and the need for reprocessing operations. Rescheduling knowledge is obtained in the form of dynamic first-order logical decision rules which can be applied in real-time to repair a schedule and guarantee feasibility. The simulation-based approach is implemented using the Problem Space Computational Model formalism, which readily integrates reinforcement learning algorithms with artificial cognitive capabilities such as memorization, chunking, and reasoning in a rescheduling agent. The Soar architecture is used to learn rescheduling rules for an industrial case study.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
REINFORCEMENT LEARNING  
dc.subject
RESCHEDULING  
dc.subject
ARTIFICIAL INTELLIGENCE  
dc.subject
COGNITIVE SYSTEMS  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Simulation-based generation of rescheduling knowledge using a cognitive architecture  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2024-11-25T14:15:23Z  
dc.journal.pagination
345-397  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica - Universidad Nacional de Villa María. Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica; Argentina  
dc.description.fil
Fil: Barsce, Juan Cruz. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-32-399208-4.00023-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/B9780323992084000234  
dc.conicet.paginas
407  
dc.source.titulo
Designing smart manufacturing systems