Mostrar el registro sencillo del ítem
dc.contributor.author
Palombarini, Jorge Andrés
dc.contributor.author
Barsce, Juan Cruz
dc.contributor.author
Martínez, Ernesto Carlos
dc.contributor.other
Hussain, Chaudhery Mustansar
dc.contributor.other
Rossit, Daniel Alejandro
dc.date.available
2024-11-28T13:53:50Z
dc.date.issued
2023
dc.identifier.citation
Palombarini, Jorge Andrés; Barsce, Juan Cruz; Martínez, Ernesto Carlos; Simulation-based generation of rescheduling knowledge using a cognitive architecture; Elsevier; 2023; 345-397
dc.identifier.isbn
978-0-323-99208-4
dc.identifier.uri
http://hdl.handle.net/11336/248915
dc.description.abstract
No schedule can withstand the test of time. Unexpected disruptions are ubiquitous in manufacturing shop-floors and supply chains. Automating rescheduling decisions is thus essential to increase the type and level of autonomy used to respond timely to unplanned events. Problem-specific rescheduling knowledge is often scarce or unavailable. In this work, based on the Soar cognitive architecture, simulated transitions between schedule states due to repair operators are used for generating and compiling knowledge to respond reactively to unforeseen events generated by internal and external factors such as machine breakdowns, rush orders, material shortages and the need for reprocessing operations. Rescheduling knowledge is obtained in the form of dynamic first-order logical decision rules which can be applied in real-time to repair a schedule and guarantee feasibility. The simulation-based approach is implemented using the Problem Space Computational Model formalism, which readily integrates reinforcement learning algorithms with artificial cognitive capabilities such as memorization, chunking, and reasoning in a rescheduling agent. The Soar architecture is used to learn rescheduling rules for an industrial case study.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
REINFORCEMENT LEARNING
dc.subject
RESCHEDULING
dc.subject
ARTIFICIAL INTELLIGENCE
dc.subject
COGNITIVE SYSTEMS
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Simulation-based generation of rescheduling knowledge using a cognitive architecture
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2024-11-25T14:15:23Z
dc.journal.pagination
345-397
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica - Universidad Nacional de Villa María. Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica; Argentina
dc.description.fil
Fil: Barsce, Juan Cruz. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-32-399208-4.00023-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/B9780323992084000234
dc.conicet.paginas
407
dc.source.titulo
Designing smart manufacturing systems
Archivos asociados