Artículo
Non-local Equations and Optimal Sobolev Inequalities on Compact Manifolds
Fecha de publicación:
11/2023
Editorial:
Springer
Revista:
The Journal Of Geometric Analysis
ISSN:
1050-6926
e-ISSN:
1559-002X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper deals with the theory of fractional Sobolev spaces on a compact Riemannian manifold (M, g). Our first main result shows that the fractional Sobolev spaces Ws,p(M) introduced by Guo et al. (Electron J Differ Equ 2018(156): 1–17, 2018) coincide with the classical Triebel–Lizorkin spaces (which in turn coincide with the Besov spaces). As an application, we study a non-local elliptic equation of the form LKu + h|u| p−2u = f |u| q−2u, (1) where the operator LK u is an integro-differential operator a little more general than the fractional Laplacian, defined on Ws,p(M). We use the Mountain Pass Theorem to show an existence result under a coercivity condition when we have a sub-critical non-linearity on the right-hand side of the Eq. (1). Our second main result is a Sobolev inequality in the critical range with an optimal constant for the fractional Sobolev spaces Ws,2(M). This inequality gives us a sufficient existence condition for (1) with p = 2 and q = 2∗ = 2n n−2s the fractional critical Sobolev exponent.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Rey, Carolina Ana; Saintier, Nicolas Bernard Claude; Non-local Equations and Optimal Sobolev Inequalities on Compact Manifolds; Springer; The Journal Of Geometric Analysis; 34; 1; 11-2023
Compartir
Altmétricas