Mostrar el registro sencillo del ítem
dc.contributor.author
Santos Canova, Luciana dos
dc.contributor.author
Vallese, Federico Danilo
dc.contributor.author
Pistonesi, Marcelo Fabian
dc.contributor.author
Araújo Gomes, Adriano
dc.date.available
2024-11-27T13:06:18Z
dc.date.issued
2023-09
dc.identifier.citation
Santos Canova, Luciana dos; Vallese, Federico Danilo; Pistonesi, Marcelo Fabian; Araújo Gomes, Adriano; An improved successive projections algorithm version to variable selection in multiple linear regression; Elsevier Science; Analytica Chimica Acta; 1274; 9-2023; 1-8
dc.identifier.issn
0003-2670
dc.identifier.uri
http://hdl.handle.net/11336/248771
dc.description.abstract
The aim of the successive projections algorithm (SPA) is to enhance the accuracy of multiple linear regressions (MLR) by minimizing the impact of collinearity effects in the calibration data set. Combining SPA with MLR as a variable selection approach has resulted in the SPA-MLR method, which has been reported in literature to produce models with good prediction ability compared to conventional full-spectrum models obtained with partial-least-squares (PLS) in some cases. This paper proposes the addition of a filter step to the current version of the SPA algorithm to reduce the number of uninformative variables before the projection phase and assist the algorithm in selecting the best variables on subsequent steps. The proposed fSPA-MLR algorithm is evaluated in two case studies involving the near-infrared spectrometric analysis of pharmaceutical tablet and diesel/biodiesel mixture samples. Compared to PLS, the fSPA-MLR models demonstrate similar or better performance. Moreover, the fSPA-MLR models outperform the original SPA-MLR in both cross-validation and external prediction. The fSPA-MLR models deliver superior results regardless of the pre-processing algorithm tested, including first-derivative Savitzky-Golay (SG) and Standard Normal Variate (SNV), or even in raw spectra data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MULTILINEAR REGRESSION
dc.subject
NIR SPECTROMETRY
dc.subject
PARTIAL LEAST SQUARES
dc.subject
SUCCESSIVE PROJECTIONS ALGORITHM
dc.subject
VARIABLE SELECTION
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An improved successive projections algorithm version to variable selection in multiple linear regression
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-25T12:25:24Z
dc.journal.volume
1274
dc.journal.pagination
1-8
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Santos Canova, Luciana dos. Universidade Federal do Rio Grande do Sul; Brasil
dc.description.fil
Fil: Vallese, Federico Danilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Araújo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; Brasil
dc.journal.title
Analytica Chimica Acta
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S000326702300781X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.aca.2023.341560
Archivos asociados