Mostrar el registro sencillo del ítem

dc.contributor.author
Santos Canova, Luciana dos  
dc.contributor.author
Vallese, Federico Danilo  
dc.contributor.author
Pistonesi, Marcelo Fabian  
dc.contributor.author
Araújo Gomes, Adriano  
dc.date.available
2024-11-27T13:06:18Z  
dc.date.issued
2023-09  
dc.identifier.citation
Santos Canova, Luciana dos; Vallese, Federico Danilo; Pistonesi, Marcelo Fabian; Araújo Gomes, Adriano; An improved successive projections algorithm version to variable selection in multiple linear regression; Elsevier Science; Analytica Chimica Acta; 1274; 9-2023; 1-8  
dc.identifier.issn
0003-2670  
dc.identifier.uri
http://hdl.handle.net/11336/248771  
dc.description.abstract
The aim of the successive projections algorithm (SPA) is to enhance the accuracy of multiple linear regressions (MLR) by minimizing the impact of collinearity effects in the calibration data set. Combining SPA with MLR as a variable selection approach has resulted in the SPA-MLR method, which has been reported in literature to produce models with good prediction ability compared to conventional full-spectrum models obtained with partial-least-squares (PLS) in some cases. This paper proposes the addition of a filter step to the current version of the SPA algorithm to reduce the number of uninformative variables before the projection phase and assist the algorithm in selecting the best variables on subsequent steps. The proposed fSPA-MLR algorithm is evaluated in two case studies involving the near-infrared spectrometric analysis of pharmaceutical tablet and diesel/biodiesel mixture samples. Compared to PLS, the fSPA-MLR models demonstrate similar or better performance. Moreover, the fSPA-MLR models outperform the original SPA-MLR in both cross-validation and external prediction. The fSPA-MLR models deliver superior results regardless of the pre-processing algorithm tested, including first-derivative Savitzky-Golay (SG) and Standard Normal Variate (SNV), or even in raw spectra data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MULTILINEAR REGRESSION  
dc.subject
NIR SPECTROMETRY  
dc.subject
PARTIAL LEAST SQUARES  
dc.subject
SUCCESSIVE PROJECTIONS ALGORITHM  
dc.subject
VARIABLE SELECTION  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An improved successive projections algorithm version to variable selection in multiple linear regression  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-25T12:25:24Z  
dc.journal.volume
1274  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Santos Canova, Luciana dos. Universidade Federal do Rio Grande do Sul; Brasil  
dc.description.fil
Fil: Vallese, Federico Danilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Araújo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; Brasil  
dc.journal.title
Analytica Chimica Acta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S000326702300781X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.aca.2023.341560