Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs

Vanagas, LauraIcon ; Cristaldi, ConstanzaIcon ; La Bella, Gino; Ganuza, AgustinaIcon ; Angel, Sergio OscarIcon ; Alonso, Andrés MarianoIcon
Fecha de publicación: 11/2024
Editorial: Nature
Revista: Scientific Reports
ISSN: 2045-2322
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

Long non-coding RNAs (lncRNAs) have emerged as significant players in diverse cellular processes, including cell differentiation. Advancements in computational methodologies have facilitated the prediction of lncRNA functions, enabling insights even in non-model organisms like pathogenic parasites, in roles such as parasite development, antigenic variation, and epigenetics. In this work, we focus on the apicomplexan Toxoplasma gondii differentiation process, where the infective stage, tachyzoite, can develop into the cysted stage, bradyzoite, under stress conditions. Using a publicly available transcriptome dataset, we predicted putative lncRNA sequences associated with this differentiation process. Notably, a substantial proportion of these putative lncRNAs exhibited stage-specific expression, particularly at the bradyzoite stage. Furthermore, co-expression patterns between coding transcripts and putative TglncRNAs suggest their involvement in shared processes, such as bradyzoite development. Putative TglncRNA loci analysis revealed their potential influence on the expression of nearby coding genes, including subtelomeric genes unique to the T. gondii genome. Finally we propose a k-mer analysis approach to predict putative functional relationships between characterized lncRNAs from model organisms like Homo sapiens and the putative T. gondii lncRNAs. Our perspective led to predict putative T. gondii lncRNA that potentially could act mediating DNA damage repair pathways, opening a new study field to validate this kind of adaptive mechanisms of T. gondii in response to stress conditions.
Palabras clave: TOXOPLASMA GONDII , NON-CODING RNAS , STRESS RESPONSE , DIFFERENTIATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.985Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/248680
URL: https://www.nature.com/articles/s41598-024-79204-6
DOI: http://dx.doi.org/10.1038/s41598-024-79204-6
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Vanagas, Laura; Cristaldi, Constanza; La Bella, Gino; Ganuza, Agustina; Angel, Sergio Oscar; et al.; A bioinformatic approach for the prediction and functional classification of Toxoplasma gondii long non-coding RNAs; Nature; Scientific Reports; 14; 1; 11-2024; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES