Artículo
Zero energy critical points of functionals depending on a parameter
Fecha de publicación:
05/2023
Editorial:
Khayyam Publishing
Revista:
Differential and Integral Equations
ISSN:
0893-4983
e-ISSN:
2832-0484
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We investigate zero energy critical points for a class of functionals Φµ defined on a uniformly convex Banach space, and depending on a real parameter µ. More precisely, we show the existence of a sequence (µn) such that Φµn has a pair of critical points ±un satisfying Φµn (±un) = 0, for every n. In addition, we provide some properties of µn and un. This result, which is proved by combining the nonlinear generalized Rayleigh quotient method [10] with the Ljusternik-Schnirelman theory, is then applied to several classes of elliptic pdes.
Palabras clave:
Zero energy
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Ramos Quoirin, Humberto Rodrigo; Silva, Jefferson; Silva, Kaye; Zero energy critical points of functionals depending on a parameter; Khayyam Publishing; Differential and Integral Equations; 36; 5-6; 5-2023; 413-436
Compartir
Altmétricas