Artículo
Z_2^k-manifolds are isospectral on forms
Fecha de publicación:
01/2008
Editorial:
Springer
Revista:
Mathematische Zeitschrift
ISSN:
0025-5874
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We obtain a simple formula for the multiplicity of eigenvalues of the Hodge-Laplace operator acting on sections of the full exterior bundle over an arbitrary compact flat Riemannian n-manifold M with holonomy group Z_2^k, 1 ≤ k ≤ n − 1. This formula implies that any two such manifolds having isospectral lattices of translations are isospectral with respect to this full Laplacian . As a consequence, we construct a large family of pairwise isospectral (with respect to the full Laplacian) and nonhomeomorphic n-manifolds of cardinality greater than 2^{(n−1)(n−2)/2}.
Palabras clave:
FLAT MANIFOLD
,
ISOSPECTRALITY
,
FORMS
,
Z_2^k-MANIFOLDS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Miatello, Roberto Jorge; Podesta, Ricardo Alberto; Rossetti, Juan Pablo; Z_2^k-manifolds are isospectral on forms; Springer; Mathematische Zeitschrift; 258; 2; 1-2008; 301-317
Compartir
Altmétricas