Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization

Garcia Reiriz, Alejandro GabrielIcon ; Damiani, Patricia Cecilia; Olivieri, Alejandro CesarIcon
Fecha de publicación: 04/2007
Editorial: Elsevier Science
Revista: Analytica Chimica Acta
ISSN: 0003-2670
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Fluorescence excitation–emission data recorded for amoxicillin after photo-activated reaction with periodate have been processed by a novel second-order multivariate method based on the combination of artificial neural networks and residual bilinearization (ANN/RBL), since the signals bear a strong non-linear relation with the analyte concentration. The selected chemometric methodology is employed for the first time to evaluate experimental non-linear second-order spectral information. Due to severe overlapping between the emission profiles for the analyte reaction product and for the urine background, calibration was done using different spiked urine samples. This allowed for the determination of amoxicillin in test spiked urines, other than those employed for calibration. When new urine samples containing a fluorescent anti-inflammatory were analyzed, accurate prediction in the presence of unexpected components required the achievement of the second-order advantage, which is provided by the post-training RBL procedure. Amoxicillin was also determined by ANN/RBL in a series of real urine samples, which allowed one to perform a comparison study with the reference high-performance liquid chromatographic technique.
Palabras clave: Second-order calibration , Fluorescence excitation–emission , Artificial neural networks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 393.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/248331
URL: https://www.sciencedirect.com/science/article/pii/S0003267007003182
DOI: https://doi.org/10.1016/j.aca.2007.02.020
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Olivieri, Alejandro Cesar; Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization; Elsevier Science; Analytica Chimica Acta; 588; 2; 4-2007; 192-199
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES