Artículo
Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption
Fecha de publicación:
03/2013
Editorial:
Elsevier
Revista:
Journal Of Complexity
ISSN:
0885-064X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the positive stationary solutions of a standard finite-difference discretization of the semilinear heat equation with nonlinear Neumann boundary conditions. We prove that, if the absorption is small enough, compared with the flux in the boundary, there exists a unique solution of such a discretization, which approximates the unique positive stationary solution of the “continuous” equation. Furthermore, we exhibit an algorithm computing an ε-approximation of such a solution by means of a homotopy continuation method. The cost of our algorithm is linear in the number of nodes involved in the discretization and the logarithm of the number of digits of approximation required.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Dratman, Ezequiel; Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption; Elsevier; Journal Of Complexity; 29; 3-4; 3-2013; 263-282
Compartir
Altmétricas