Artículo
A Family of Robust Algorithms Exploiting Sparsity in Adaptive Filters
Fecha de publicación:
05/2009
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
Ieee Transactions On Audio Speech And Language Processing
ISSN:
1558-7916
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We introduce a new family of algorithms to exploit sparsity in adaptive filters. It is based on a recently introduced new framework for designing robust adaptive filters. It results from minimizing a certain cost function subject to a time-dependent constraint on the norm of the filter update. Although in general this problem does not have a closed-form solution, we propose an approximate one which is very close to the optimal solution. We take a particular algorithm from this family and provide some theoretical results regarding the asymptotic behaviour of the algorithm. Finally, we test it in different environments for system identification and acoustic echo cancellation applications.
Palabras clave:
SPARSITY
,
ROBUST ADAPTIVE FILTERING
,
IMPULSIVE NOISE
,
NLMS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Rey Vega, Leonardo Javier; Rey, Hernan Gonzalo; Benesty, Jacob ; Tressens, Sara; A Family of Robust Algorithms Exploiting Sparsity in Adaptive Filters; Institute of Electrical and Electronics Engineers; Ieee Transactions On Audio Speech And Language Processing; 17; 4; 5-2009; 572-581
Compartir
Altmétricas