Mostrar el registro sencillo del ítem

dc.contributor.author
Pulido, Manuel Arturo  
dc.contributor.author
Rodas, Claudio José Francisco  
dc.date.available
2017-09-21T15:01:17Z  
dc.date.issued
2008-07-10  
dc.identifier.citation
Pulido, Manuel Arturo; Rodas, Claudio José Francisco; Do transience gravity waves in a shear flow break?; John Wiley & Sons Ltd; Quarterly Journal Of The Royal Meteorological Society; 134; 634; 10-7-2008; 1083-1094  
dc.identifier.issn
0035-9009  
dc.identifier.uri
http://hdl.handle.net/11336/24787  
dc.description.abstract
The propagation of transient gravity waves in a shear flow towards their critical levels is examined using a ray tracing approximation and a higher-degree (quasi-optic) approximation. Because of its transient forcing, the amplitude of transient waves decays to zero in the neighbourhood of the critical region so that it is not clear whether transient gravity waves will reach the convective instability threshold or not. The analysis shows that the horizontal perturbation decays asymptotically as the inverse of the square root of time, while the vertical wavenumber depends linearly on time, thus transient gravity waves attain convective instability for long times. The theoretical results are compared with numerical simulations. The ray path approximation is not able to reproduce the maximum amplitude, but the quasi-optic approximation gives a reasonable agreement at short and long times. There are three breaking regimes for transient gravity waves. For wave packets with a narrow frequency spectrum (quasi-steady waves) and large enough initial wave amplitude, the wave breaking is similar to the abrupt monochromatic wave overturning. On the other hand, highly transient wave packets will dissipate near the critical region for very long times with small wave amplitudes and high vertical wavenumber. The third regime is a transition between the two extremes; in this case both wave amplitude and vertical wavenumber are important to produce the convective threshold. The dependencies of the convective instability height (a quantity that may be useful for gravity wave parametrizations) on the Richardson number and the frequency spectral width are obtained.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Convective Instability  
dc.subject
Quasi-Optics  
dc.subject
Gravity Wave Parameterizations  
dc.subject
Ray Tracing  
dc.subject
Wave Breaking  
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Do transience gravity waves in a shear flow break?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-08-04T15:41:08Z  
dc.journal.volume
134  
dc.journal.number
634  
dc.journal.pagination
1083-1094  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina  
dc.description.fil
Fil: Rodas, Claudio José Francisco. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina  
dc.journal.title
Quarterly Journal Of The Royal Meteorological Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/qj.272/full  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/qj.272