Mostrar el registro sencillo del ítem

dc.contributor.author
Milocco, Ruben Horacio  
dc.contributor.author
De Doná, J. A.  
dc.date.available
2024-11-08T13:20:34Z  
dc.date.issued
2010-12  
dc.identifier.citation
Milocco, Ruben Horacio; De Doná, J. A.; Robust deconvolution for ARMAX models with Gaussian uncertainties; Elsevier Science; Signal Processing; 90; 12; 12-2010; 3110-3121  
dc.identifier.issn
0165-1684  
dc.identifier.uri
http://hdl.handle.net/11336/247658  
dc.description.abstract
In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the \emph{a posteriori} probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input-output ARMAX models, where the uncertainty is modeled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the \emph{a posteriori} probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Robust Filtering  
dc.subject
Truncated gaussian  
dc.subject
MAP  
dc.subject
ARMAX  
dc.subject.classification
Telecomunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Robust deconvolution for ARMAX models with Gaussian uncertainties  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-07T11:29:25Z  
dc.journal.volume
90  
dc.journal.number
12  
dc.journal.pagination
3110-3121  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina  
dc.description.fil
Fil: De Doná, J. A.. Universidad de Newcastle; Australia  
dc.journal.title
Signal Processing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168410002161  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.sigpro.2010.05.014