Mostrar el registro sencillo del ítem
dc.contributor.author
Milocco, Ruben Horacio
dc.contributor.author
De Doná, J. A.
dc.date.available
2024-11-08T13:20:34Z
dc.date.issued
2010-12
dc.identifier.citation
Milocco, Ruben Horacio; De Doná, J. A.; Robust deconvolution for ARMAX models with Gaussian uncertainties; Elsevier Science; Signal Processing; 90; 12; 12-2010; 3110-3121
dc.identifier.issn
0165-1684
dc.identifier.uri
http://hdl.handle.net/11336/247658
dc.description.abstract
In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the \emph{a posteriori} probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input-output ARMAX models, where the uncertainty is modeled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the \emph{a posteriori} probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Robust Filtering
dc.subject
Truncated gaussian
dc.subject
MAP
dc.subject
ARMAX
dc.subject.classification
Telecomunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Robust deconvolution for ARMAX models with Gaussian uncertainties
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-07T11:29:25Z
dc.journal.volume
90
dc.journal.number
12
dc.journal.pagination
3110-3121
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina
dc.description.fil
Fil: De Doná, J. A.. Universidad de Newcastle; Australia
dc.journal.title
Signal Processing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168410002161
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.sigpro.2010.05.014
Archivos asociados