Mostrar el registro sencillo del ítem

dc.contributor.author
Goodarzi, Mohammad  
dc.contributor.author
Freitas, Matheus P.  
dc.contributor.author
Wu, Chih H.  
dc.contributor.author
Duchowicz, Pablo Román  
dc.date.available
2024-11-08T12:38:32Z  
dc.date.issued
2010-04  
dc.identifier.citation
Goodarzi, Mohammad; Freitas, Matheus P.; Wu, Chih H.; Duchowicz, Pablo Román; pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 101; 2; 4-2010; 102-109  
dc.identifier.issn
0169-7439  
dc.identifier.uri
http://hdl.handle.net/11336/247639  
dc.description.abstract
The pKa values of a series of 107 indicators have been modeled by means of a quantitative structure–property relationship (QSPR) approach based on physicochemical descriptors and different variable selection and regression methods. A genetic algorithm/least square support vector regression (GA-LSSVR) model gave the most accurate estimations/predictions, with squared correlation coefficients of 0.90 and 0.89 for the training and test set compounds, respectively. The prediction ability of this model was found to be superior to that based on support vector machine regression alone, revealing the important effect of selecting suitabledescriptors during a QSPR modeling. Moreover, the GA-LSSVR model showed higher predictive capability than linear methods, demonstrating the influence of nonlinearity on the modeling of pKa values, an extremely useful parameter in the analytical sciences.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
pKa  
dc.subject
pH indicators  
dc.subject
Quantitative structureproperty relationships  
dc.subject
Support vector machines  
dc.subject
GA-LSSVR  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-11-07T11:29:33Z  
dc.journal.volume
101  
dc.journal.number
2  
dc.journal.pagination
102-109  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Goodarzi, Mohammad. Islamic Azad University; Irán  
dc.description.fil
Fil: Freitas, Matheus P.. Universidad Federal de Lavras; Brasil  
dc.description.fil
Fil: Wu, Chih H.. National Taichung University; China  
dc.description.fil
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.journal.title
Chemometrics and Intelligent Laboratory Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743910000274  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2010.02.003