Mostrar el registro sencillo del ítem
dc.contributor.author
Goodarzi, Mohammad
dc.contributor.author
Freitas, Matheus P.
dc.contributor.author
Wu, Chih H.
dc.contributor.author
Duchowicz, Pablo Román
dc.date.available
2024-11-08T12:38:32Z
dc.date.issued
2010-04
dc.identifier.citation
Goodarzi, Mohammad; Freitas, Matheus P.; Wu, Chih H.; Duchowicz, Pablo Román; pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 101; 2; 4-2010; 102-109
dc.identifier.issn
0169-7439
dc.identifier.uri
http://hdl.handle.net/11336/247639
dc.description.abstract
The pKa values of a series of 107 indicators have been modeled by means of a quantitative structure–property relationship (QSPR) approach based on physicochemical descriptors and different variable selection and regression methods. A genetic algorithm/least square support vector regression (GA-LSSVR) model gave the most accurate estimations/predictions, with squared correlation coefficients of 0.90 and 0.89 for the training and test set compounds, respectively. The prediction ability of this model was found to be superior to that based on support vector machine regression alone, revealing the important effect of selecting suitabledescriptors during a QSPR modeling. Moreover, the GA-LSSVR model showed higher predictive capability than linear methods, demonstrating the influence of nonlinearity on the modeling of pKa values, an extremely useful parameter in the analytical sciences.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
pKa
dc.subject
pH indicators
dc.subject
Quantitative structureproperty relationships
dc.subject
Support vector machines
dc.subject
GA-LSSVR
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-07T11:29:33Z
dc.journal.volume
101
dc.journal.number
2
dc.journal.pagination
102-109
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Goodarzi, Mohammad. Islamic Azad University; Irán
dc.description.fil
Fil: Freitas, Matheus P.. Universidad Federal de Lavras; Brasil
dc.description.fil
Fil: Wu, Chih H.. National Taichung University; China
dc.description.fil
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.journal.title
Chemometrics and Intelligent Laboratory Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743910000274
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2010.02.003
Archivos asociados