Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays

Gomes Pio, MauricioIcon ; Molina, Maricel FernandaIcon ; Adrover, EzequielaIcon ; Rivolta, Carina MarcelaIcon ; Targovnik, Hector ManuelIcon
Tipo del evento: Reunión
Nombre del evento: LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología
Fecha del evento: 16/11/2022
Institución Organizadora: Sociedad Argentina de Investigación Clínica; Sociedad Argentina de Inmunología; Sociedad Argentina de Fisiología;
Título de la revista: Medicina
Editorial: Fundación Revista Medicina
ISSN: 1669-9106
e-ISSN: 1669-9106
Idioma: Inglés
Clasificación temática:
Genética Humana

Resumen

Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene had been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Missense variants represent a large number of spontaneous variations that cause human disease. Such variants can behave with heterogeneous patterns of pathogenicity, depending of the amino acids and structures involved and the impact of the variant to create folding rearrangements. Therefore, the pathogenicity of missense mutations can be more challenging to predict. In the present work we show pathogenicity predictions of two novel variants in TG identified by our group, p.Pro2232Leu and p.Cys1282Tyr, where we combine the performance between pathogenicity prediction programs, protein modeling using ChimeraX and the gold standard protein expression system in order to accurate our knowledge in the interpretation of results using In Silico tools. The results show that of 20 programs, Pro2232Leu and p.Cys1282Tyr variants were defined as pathogenic by 17 and 15 programs respectively. QuimeraX analysis showed important structural changes as rupture of hydrogen’s bonds and the arisement of Clashes that could affect the correct folding for both variants. To corroborate the results identified In Silico, we proceeded to perform directed mutagenesis on recombinant plasmids (pcDNA6-TG) and transfection of the same into HEK93T cells. The Western Blot to compare the cell lysate and supernatant showed that both p.Pro2232Leu and p.Cys1282Tyr variants produced intracellular retention. Our results show that the combination of In Silicoprediction programs with protein modeling analysis improves and makes the identification and characterization of pathogenic variants more effective.
Palabras clave: Thyroglobulin , hypothyroidism , QuimeraX
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.339Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/247576
Colecciones
Eventos(INIGEM)
Eventos de INSTITUTO DE INMUNOLOGIA, GENETICA Y METABOLISMO
Citación
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays; LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología; Argentina; 2022; 1-6
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES