Artículo
Disjoint hypercyclicity, Sidon sets and weakly mixing operators
Fecha de publicación:
08/2023
Editorial:
Cambridge University Press
Revista:
Ergodic Theory And Dynamical Systems
ISSN:
0143-3857
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove that a finite set of natural numbers J satisfies that J∪{0} is not Sidon if and only if for any operator T, the disjoint hypercyclicity of {Tj:j∈J} implies that T is weakly mixing. As an application we show the existence of a non-weakly mixing operator T such that T⊕T2⊕⋯⊕Tn is hypercyclic for every n.
Palabras clave:
Disjoint hypercyclicity
,
Sidon Sets
,
Weakly mixing operators
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Cardeccia, Rodrigo Alejandro; Disjoint hypercyclicity, Sidon sets and weakly mixing operators; Cambridge University Press; Ergodic Theory And Dynamical Systems; 44; 5; 8-2023; 1315-1329
Compartir
Altmétricas