Mostrar el registro sencillo del ítem
dc.contributor.author
Khalid, Saif
dc.contributor.author
Abdulwahab, Saddam
dc.contributor.author
Stanchi, Oscar Agustín
dc.contributor.author
Quiroga, Facundo Manuel
dc.contributor.author
Ronchetti, Franco
dc.contributor.author
Puig, Domenec
dc.contributor.author
Rashwan, Hatem A.
dc.date.available
2024-11-05T10:22:32Z
dc.date.issued
2024-10
dc.identifier.citation
Khalid, Saif; Abdulwahab, Saddam; Stanchi, Oscar Agustín; Quiroga, Facundo Manuel; Ronchetti, Franco; et al.; VISTA: vision improvement via split and reconstruct deep neural network for fundus image quality assessment; Springer; Neural Computing And Applications; 10-2024; 1-20
dc.identifier.issn
0941-0643
dc.identifier.uri
http://hdl.handle.net/11336/247248
dc.description.abstract
Widespread eye conditions such as cataracts, diabetic retinopathy, and glaucoma impact people worldwide. Ophthalmology uses fundus photography for diagnosing these retinal disorders, but fundus images are prone to image quality challenges. Accurate diagnosis hinges on high-quality fundus images. Therefore, there is a need for image quality assessment methods to evaluate fundus images before diagnosis. Consequently, this paper introduces a deep learning model tailored for fundus images that supports large images. Our division method centres on preserving the original image’s high-resolution features while maintaining low computing and high accuracy. The proposed approach encompasses two fundamental components: an autoencoder model for input image reconstruction and image classification to classify the image quality based on the latent features extracted by the autoencoder, all performed at the original image size, without alteration, before reassembly for decoding networks. Through post hoc interpretability methods, we verified that our model focuses on key elements of fundus image quality. Additionally, an intrinsic interpretability module has been designed into the network that allows decomposing class scores into underlying concepts quality such as brightness or presence of anatomical structures. Experimental results in our model with EyeQ, a fundus image dataset with three categories (Good, Usable, and Rejected) demonstrate that our approach produces competitive outcomes compared to other deep learning-based methods with an overall accuracy of 0.9066, a precision of 0.8843, a recall of 0.8905, and an impressive F1-score of 0.8868.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Autoencoder network
dc.subject
Retinal image
dc.subject
Explainability
dc.subject
Fundus image
dc.subject
Gradability
dc.subject
Quality assessment
dc.subject
Interpretability
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
VISTA: vision improvement via split and reconstruct deep neural network for fundus image quality assessment
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-11-01T11:27:49Z
dc.journal.pagination
1-20
dc.journal.pais
Alemania
dc.description.fil
Fil: Khalid, Saif. Universitat Rovira I Virgili; España
dc.description.fil
Fil: Abdulwahab, Saddam. Universitat Rovira I Virgili; España
dc.description.fil
Fil: Stanchi, Oscar Agustín. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Quiroga, Facundo Manuel. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
dc.description.fil
Fil: Ronchetti, Franco. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática Lidi; Argentina
dc.description.fil
Fil: Puig, Domenec. Universitat Rovira I Virgili; España
dc.description.fil
Fil: Rashwan, Hatem A.. Universitat Rovira I Virgili; España
dc.journal.title
Neural Computing And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00521-024-10174-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00521-024-10174-6
Archivos asociados