Mostrar el registro sencillo del ítem

dc.contributor.author
Castilla, Tomás  
dc.contributor.author
Martínez, Marcela S.  
dc.contributor.author
Leguía, Mercedes  
dc.contributor.author
Larrabide, Ignacio  
dc.contributor.author
Orlando, José Ignacio  
dc.contributor.other
Brieva, Jorge  
dc.contributor.other
Guevara, Pamela  
dc.contributor.other
Lepore, Natasha  
dc.contributor.other
Linguraru, Marius G.  
dc.contributor.other
Rittner, Letícia  
dc.contributor.other
Romero Castro M. D., Eduardo  
dc.date.available
2024-11-05T10:21:05Z  
dc.date.issued
2022  
dc.identifier.citation
A ResNet is all you need: modeling a strong baseline for detecting referable diabetic retinopathy in fundus images; 18th International Symposium on Medical Information Processing and Analysis; Valparaíso; Chile; 2022; 1-10  
dc.identifier.uri
http://hdl.handle.net/11336/247238  
dc.description.abstract
Deep learning is currently the state-of-the-art for automated detection of referable diabetic retinopathy (DR) from color fundus photographs (CFP). While the general interest is put on improving results through methodological innovations, it is not clear how good these approaches perform compared to standard deep classification models trained with the appropriate settings. In this paper we propose to model a strong baseline for this task based on a simple and standard ResNet-18 architecture. To this end, we built on top of prior art by training the model with a standard preprocessing strategy but using images from several public sources and an empirically calibrated data augmentation setting. To evaluate its performance, we covered multiple clinically relevant perspectives, including image and patient level DR screening, discriminating responses by input quality and DR grade, assessing model uncertainties and analyzing its results in a qualitative manner. With no other methodological innovation than a carefully designed training, our ResNet model achieved an AUC = 0.955 (0.953 - 0.956) on a combined test set of 61007 test images from different public datasets, which is in line or even better than what other more complex deep learning models reported in the literature. Similar AUC values were obtained in 480 images from two separate in-house databases specially prepared for this study, which emphasize its generalization ability. This confirms that standard networks can still be strong baselines for this task if properly trained.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Society of Photo-Optical Instrumentation Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DIABETIC RETINOPATHY  
dc.subject
FUNDUS PHOTOGRAPHY  
dc.subject
DEEP LEARNING  
dc.subject
IMAGEN CLASSIFICATION  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A ResNet is all you need: modeling a strong baseline for detecting referable diabetic retinopathy in fundus images  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2024-06-07T09:23:46Z  
dc.journal.volume
12567  
dc.journal.pagination
1-10  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Bellingham  
dc.description.fil
Fil: Castilla, Tomás. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: Martínez, Marcela S.. Centro de Oftalmología Martínez; Argentina  
dc.description.fil
Fil: Leguía, Mercedes. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina  
dc.description.fil
Fil: Larrabide, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: Orlando, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12567/125670P/A-ResNet-is-all-you-need--modeling-a-strong/10.1117/12.2669816.short  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1117/12.2669816  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Simposio  
dc.description.nombreEvento
18th International Symposium on Medical Information Processing and Analysis  
dc.date.evento
2022-11-09  
dc.description.ciudadEvento
Valparaíso  
dc.description.paisEvento
Chile  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Symposium on Medical Information Processing and Analysis Foundation  
dc.description.institucionOrganizadora
Advanced Center for Electrical and Electronic Engineering  
dc.source.libro
Proceedings of the 18th International Symposium on Medical Information Processing and Analysis  
dc.date.eventoHasta
2022-11-11  
dc.type
Simposio