Mostrar el registro sencillo del ítem
dc.contributor.author
Abril, Juan Carlos
dc.contributor.author
Abril, María de Las Mercedes
dc.contributor.other
Qing Wen, Wang
dc.date.available
2024-10-25T10:34:28Z
dc.date.issued
2023
dc.identifier.citation
Abril, Juan Carlos; Abril, María de Las Mercedes; Compared Probabilistic and Inferential Schools; BP International; 4; 2023; 96-118
dc.identifier.isbn
978-81-19491-72-8
dc.identifier.uri
http://hdl.handle.net/11336/246422
dc.description.abstract
In statistics, frequentist approach has often been considered as the only appropriate way to carry out scientific and applied work. However, since the 1950s, Bayesian statistics has been progressively gaining ground in academia. The purpose of this study is to demonstrate the points of encounter between these two apparently opposite currents of thought. For it, several topics are reviewed, explaining what Bayes’ Theorem is by means of didactic examples. On the other hand, it is shown that the frequentist reject the central postulate of the Bayesian approach, but are forced to replace it with alternative solutions, the most generalized being the Maximum Likelihood. Facing this discrepancy, it is suggested that it could be a misinterpretation between both approaches and offer examples in which Bayes’ postulate and the Maximum Likelihood principle yield the same numerical answer. Then, inferences from a priori information, both non-informative and informative, are analyzed and the inferential proposals of both schools are explored. In addition, the fiducial approach, which works with sufficient statistics, is discussed. All these aspects are discussed from the mathematical perspectives of renowned statisticians such as Fisher, Keynes, Carnap, Good, Durbin, Box, Giere, Neyman, Pearson, among others. In addition, philosophical assumptions that philosophers such as Lakatos, Popper and Kuhn, among others, have failed to offer are sought in order to establish a possible reconciliation between these currents of statistical thought in apparent conflict.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
BP International
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Classical approach
dc.subject
Likelihood approach
dc.subject
Bayesian approach
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Compared Probabilistic and Inferential Schools
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2024-10-15T16:03:33Z
dc.journal.volume
4
dc.journal.pagination
96-118
dc.journal.pais
India
dc.journal.ciudad
Kolkata
dc.description.fil
Fil: Abril, Juan Carlos. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
dc.description.fil
Fil: Abril, María de Las Mercedes. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.9734/bpi/ratmcs/v4/6376C
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://stm.bookpi.org/RATMCS-V4/article/view/11817
dc.conicet.paginas
196
dc.source.titulo
Research and Applications Towards Mathematics and Computer Science
Archivos asociados