Mostrar el registro sencillo del ítem

dc.contributor.author
Abril, Juan Carlos  
dc.contributor.author
Abril, María de Las Mercedes  
dc.contributor.other
Qing Wen, Wang  
dc.date.available
2024-10-25T10:34:28Z  
dc.date.issued
2023  
dc.identifier.citation
Abril, Juan Carlos; Abril, María de Las Mercedes; Compared Probabilistic and Inferential Schools; BP International; 4; 2023; 96-118  
dc.identifier.isbn
978-81-19491-72-8  
dc.identifier.uri
http://hdl.handle.net/11336/246422  
dc.description.abstract
In statistics, frequentist approach has often been considered as the only appropriate way to carry out scientific and applied work. However, since the 1950s, Bayesian statistics has been progressively gaining ground in academia. The purpose of this study is to demonstrate the points of encounter between these two apparently opposite currents of thought. For it, several topics are reviewed, explaining what Bayes’ Theorem is by means of didactic examples. On the other hand, it is shown that the frequentist reject the central postulate of the Bayesian approach, but are forced to replace it with alternative solutions, the most generalized being the Maximum Likelihood. Facing this discrepancy, it is suggested that it could be a misinterpretation between both approaches and offer examples in which Bayes’ postulate and the Maximum Likelihood principle yield the same numerical answer. Then, inferences from a priori information, both non-informative and informative, are analyzed and the inferential proposals of both schools are explored. In addition, the fiducial approach, which works with sufficient statistics, is discussed. All these aspects are discussed from the mathematical perspectives of renowned statisticians such as Fisher, Keynes, Carnap, Good, Durbin, Box, Giere, Neyman, Pearson, among others. In addition, philosophical assumptions that philosophers such as Lakatos, Popper and Kuhn, among others, have failed to offer are sought in order to establish a possible reconciliation between these currents of statistical thought in apparent conflict.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BP International  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Classical approach  
dc.subject
Likelihood approach  
dc.subject
Bayesian approach  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Compared Probabilistic and Inferential Schools  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2024-10-15T16:03:33Z  
dc.journal.volume
4  
dc.journal.pagination
96-118  
dc.journal.pais
India  
dc.journal.ciudad
Kolkata  
dc.description.fil
Fil: Abril, Juan Carlos. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina  
dc.description.fil
Fil: Abril, María de Las Mercedes. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.9734/bpi/ratmcs/v4/6376C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://stm.bookpi.org/RATMCS-V4/article/view/11817  
dc.conicet.paginas
196  
dc.source.titulo
Research and Applications Towards Mathematics and Computer Science