Mostrar el registro sencillo del ítem

dc.contributor.author
Mestre, Martin Federico  
dc.contributor.author
Argüelles, Carlos Raúl  
dc.contributor.author
Carpintero, Daniel Diego  
dc.contributor.author
Crespi, Valentina  
dc.contributor.author
Krut, Andreas  
dc.date.available
2024-10-22T13:25:44Z  
dc.date.issued
2024-06  
dc.identifier.citation
Mestre, Martin Federico; Argüelles, Carlos Raúl; Carpintero, Daniel Diego; Crespi, Valentina; Krut, Andreas; Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution; EDP Sciences; Astronomy and Astrophysics; 689; A194; 6-2024; 1-11  
dc.identifier.issn
0004-6361  
dc.identifier.uri
http://hdl.handle.net/11336/246243  
dc.description.abstract
Context. Traditional studies of stellar streams typically involve phenomenological ΛCDM halos or ad hoc dark matter (DM) profiles with different degrees of triaxiality, which preclude us from gaining insights into the nature and mass of the DM particles. Recently, the maximum entropy principle of halo formation has been applied to provide a DM halo model that incorporates the fermionic (quantum) nature of the particles while leading to DM profiles that depend on the fermion mass. These profiles develop a more general “dense core – diluted halo” morphology that can explain the Galactic rotation curve, while the degenerate fermion core can mimic the central massive black hole (BH). Aims. We model the GD-1 stellar stream using a spherical core-halo DM distribution for the host that simultaneously explains the dynamics of the S-cluster stars through its degenerate fermion core without a central BH. Methods. We used two optimization algorithms in order to fit both the initial conditions of the stream orbit and the fermionic model. We modeled the baryonic potential with a bulge and two disks (thin and thick) with fixed parameters according to the recent literature. The stream observables were 5D phase-space data from the Gaia DR2 survey. Results. We were able to find good fits for both the GD-1 stream and the S-stars for a family of fermionic core-halo profiles parameterized by the fermion mass. The particle masses are constrained in the range 56 keV c−2, with a corresponding DM core of ∼103 Schwarzschild radii, to 360 keV c−2, which corresponds to the most compact core of 5 Schwarzschild radii prior to the gravitational collapse into a BH of about 4 × 106 M⊙. Conclusions. This work provides evidence that the fermionic profile is a reliable model for the massive central object and for the DM of the Galaxy. Remarkably, this model predicts a total Milky Way mass of 2.3 × 1011 M⊙, which agrees with recent mass estimates obtained from Gaia DR3 rotation curves (Gaia RC). In summary, with one single fermionic model for the DM distribution of the Milky Way, we obtain a good fit on three totally different distance scales of the Galaxy: ∼10−6 kpc (central, S-stars), ∼14 kpc (middle, GD-1), and ∼30 kpc (boundary, Gaia RC mass estimate).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
EDP Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
ASTROPHYSICS - ASTROPHYSICS OF GALAXIES  
dc.subject
GENERAL RELATIVITY AND QUANTUM COSMOLOGY  
dc.subject
QUANTUM PHYSICS  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Modeling the track of the GD-1 stellar stream inside a host with a fermionic dark matter core-halo distribution  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-09-09T13:40:46Z  
dc.journal.volume
689  
dc.journal.number
A194  
dc.journal.pagination
1-11  
dc.journal.pais
Francia  
dc.journal.ciudad
Paris  
dc.description.fil
Fil: Mestre, Martin Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.description.fil
Fil: Argüelles, Carlos Raúl. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina  
dc.description.fil
Fil: Carpintero, Daniel Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.description.fil
Fil: Crespi, Valentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Krut, Andreas. Università degli studi di Roma "La Sapienza"; Italia  
dc.journal.title
Astronomy and Astrophysics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202348626  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1051/0004-6361/202348626