Mostrar el registro sencillo del ítem

dc.contributor.author
Lange, H.  
dc.contributor.author
Rosso, Osvaldo Aníbal  
dc.contributor.author
Hauhs, M.  
dc.date.available
2017-09-19T16:44:12Z  
dc.date.issued
2013-06  
dc.identifier.citation
Lange, H.; Rosso, Osvaldo Aníbal; Hauhs, M.; Ordinal pattern and statistical complexity analysis of daily stream flow time series; Springer; European Physical Journal: Special Topics; 222; 2; 6-2013; 535-552  
dc.identifier.issn
1951-6355  
dc.identifier.uri
http://hdl.handle.net/11336/24594  
dc.description.abstract
When calculating the Bandt and Pompe ordinal pattern distribution from given time series at depth D, some of the D! patterns might not appear. This could be a pure finite size effect (missing patterns) or due to dynamical properties of the observed system (forbidden patterns). For pure noise, no forbidden patterns occur, contrary to deterministic chaotic maps. We investigate long time series of river runoff for missing patterns and calculate two global properties of their pattern distributions: the Permutation Entropy and the Permutation Statistical Complexity. This is compared to purely stochastic but long-range correlated processes, the k-noise (noise with power spectrum f−k), where k is a parameter determining the strength of the correlations. Although these processes closely resemble runoff series in their correlation behavior, the ordinal pattern statistics reveals qualitative differences, which can be phrased in terms of missing patterns behavior or the temporal asymmetry of the observed series. For the latter, an index is developed in the paper, which may be used to quantify the asymmetry of natural processes as opposed to artificially generated data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ordinal Patterns  
dc.subject
Bandt And Pompe  
dc.subject
Stream Flow  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Ordinal pattern and statistical complexity analysis of daily stream flow time series  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-19T14:24:44Z  
dc.identifier.eissn
1951-6401  
dc.journal.volume
222  
dc.journal.number
2  
dc.journal.pagination
535-552  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Lange, H.. Norwegian Forest and Landscape Institute; Noruega  
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Hauhs, M.. University of Bayreuth; Alemania  
dc.journal.title
European Physical Journal: Special Topics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2013-01858-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1140/epjst/e2013-01858-3