Mostrar el registro sencillo del ítem
dc.contributor.author
Lange, H.
dc.contributor.author
Rosso, Osvaldo Aníbal
dc.contributor.author
Hauhs, M.
dc.date.available
2017-09-19T16:44:12Z
dc.date.issued
2013-06
dc.identifier.citation
Lange, H.; Rosso, Osvaldo Aníbal; Hauhs, M.; Ordinal pattern and statistical complexity analysis of daily stream flow time series; Springer; European Physical Journal: Special Topics; 222; 2; 6-2013; 535-552
dc.identifier.issn
1951-6355
dc.identifier.uri
http://hdl.handle.net/11336/24594
dc.description.abstract
When calculating the Bandt and Pompe ordinal pattern distribution from given time series at depth D, some of the D! patterns might not appear. This could be a pure finite size effect (missing patterns) or due to dynamical properties of the observed system (forbidden patterns). For pure noise, no forbidden patterns occur, contrary to deterministic chaotic maps. We investigate long time series of river runoff for missing patterns and calculate two global properties of their pattern distributions: the Permutation Entropy and the Permutation Statistical Complexity. This is compared to purely stochastic but long-range correlated processes, the k-noise (noise with power spectrum f−k), where k is a parameter determining the strength of the correlations. Although these processes closely resemble runoff series in their correlation behavior, the ordinal pattern statistics reveals qualitative differences, which can be phrased in terms of missing patterns behavior or the temporal asymmetry of the observed series. For the latter, an index is developed in the paper, which may be used to quantify the asymmetry of natural processes as opposed to artificially generated data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Ordinal Patterns
dc.subject
Bandt And Pompe
dc.subject
Stream Flow
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Ordinal pattern and statistical complexity analysis of daily stream flow time series
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-09-19T14:24:44Z
dc.identifier.eissn
1951-6401
dc.journal.volume
222
dc.journal.number
2
dc.journal.pagination
535-552
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Lange, H.. Norwegian Forest and Landscape Institute; Noruega
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Computación. Laboratorio de Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Hauhs, M.. University of Bayreuth; Alemania
dc.journal.title
European Physical Journal: Special Topics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2013-01858-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1140/epjst/e2013-01858-3
Archivos asociados