Mostrar el registro sencillo del ítem

dc.contributor.author
Selvaraj, Kumar  
dc.contributor.author
Spontón, Marisa Elisabet  
dc.contributor.author
Estenoz, Diana Alejandra  
dc.contributor.author
Forchetti Casarino, Agustin  
dc.contributor.author
Veerasamy, Uma Shankar  
dc.contributor.author
Kumar, Manimaran  
dc.contributor.author
Al-Mohaimeed, Amal M.  
dc.contributor.author
Al-onazi, Wedad A.  
dc.contributor.author
Kannaiyan, Dinakaran  
dc.date.available
2024-10-14T10:31:43Z  
dc.date.issued
2024-02  
dc.identifier.citation
Selvaraj, Kumar; Spontón, Marisa Elisabet; Estenoz, Diana Alejandra; Forchetti Casarino, Agustin; Veerasamy, Uma Shankar; et al.; Development of quinoline-based heteroatom polybenzoxazines reinforced graphitic carbon nitride (GCN) carbonisation composites for emerging supercapacitor applications; Royal Society of Chemistry; Soft Matter; 20; 6; 2-2024; 1210-1223  
dc.identifier.issn
1744-683X  
dc.identifier.uri
http://hdl.handle.net/11336/245910  
dc.description.abstract
The current research described in this paper, focuses on the development of a new quinoline-basedMannich-type benzoxazine and its use to obtain advanced carbonisation materials with a high energy storage capacity. Based on this, a quinoline-based benzoxazine monomer (Q-xda) was synthesised by a reaction between 8-hydroxyquinoline, xylylenediamine and paraformaldehyde, and it is characterised by FT-IR and 1H-NMR spectroscopy. Composites were prepared from the benzoxazine and variable weight percentages of graphitic carbon nitride (GCN) (i.e., 5, 10, and 15 wt%). The oxazine ring-opening curing process of the polybenzoxazine composites, and its subsequent pyrolysis reaction was performed; and their chemical structures were confirmed using FT-IR spectroscopy. Also, the thermal and morphological characteristics of the composites were evaluated by XRD, thermogravimetric analysis (TGA), and SEM analyses. According to the results of the thermal experiments, adding GCN reinforcement significantly increased the thermal stability and char yield of the resultant composites.Electrochemical, and hydrophobic investigations were also carried out, and the results of thesesuggesting that the composites reinforced with 15 wt% GCN exhibit the highest dielectric constant (high k = 10.2) and contact angle (1451). However, all the crosslinked composites demonstrated a remarkable electrochemical performance as pseudocapacitors. The resulting poly(Q-xda) + 15 wt% GCN electrodes showed a higher capacitance and a lower transferred charge resistance (i.e., 370 F g1 at 6 A g1 and 20.8 O) than the poly(Q-xda) electrode (i.e., 216 F g1 at 6 A g1 and 26.0 O). In addition, the poly(Qxda) + 15% GCN exhibited a cycling efficiency of 96.2% even after 2000 cycles. From these results, it can be concluded that the constructed electrodes perform well in electrochemical operations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Polybenzoxazines  
dc.subject
Quinoline  
dc.subject
Composite material  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Development of quinoline-based heteroatom polybenzoxazines reinforced graphitic carbon nitride (GCN) carbonisation composites for emerging supercapacitor applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-10-01T16:06:02Z  
dc.journal.volume
20  
dc.journal.number
6  
dc.journal.pagination
1210-1223  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Selvaraj, Kumar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Spontón, Marisa Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Estenoz, Diana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Forchetti Casarino, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Veerasamy, Uma Shankar. Chiang Mai University; Tailandia  
dc.description.fil
Fil: Kumar, Manimaran. National Research And Innovation Agency; Indonesia  
dc.description.fil
Fil: Al-Mohaimeed, Amal M.. King Saud University; Arabia Saudita  
dc.description.fil
Fil: Al-onazi, Wedad A.. King Saud University; Arabia Saudita  
dc.description.fil
Fil: Kannaiyan, Dinakaran. King Saud University; Arabia Saudita  
dc.journal.title
Soft Matter  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/d3sm01445b  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2024/sm/d3sm01445b