Mostrar el registro sencillo del ítem

dc.contributor.author
Ballari, Maria de Los Milagros  
dc.contributor.author
Filip Edelmannová, Miroslava  
dc.contributor.author
Ricka, Rudolf  
dc.contributor.author
Reli, Martin  
dc.contributor.author
Kocí, Kamila  
dc.date.available
2024-10-14T10:29:05Z  
dc.date.issued
2024-06  
dc.identifier.citation
Ballari, Maria de Los Milagros; Filip Edelmannová, Miroslava; Ricka, Rudolf; Reli, Martin; Kocí, Kamila; Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed; Elsevier; Energy Conversion and Management: X; 23; 100651; 6-2024; 1-10  
dc.identifier.issn
2590-1745  
dc.identifier.uri
http://hdl.handle.net/11336/245908  
dc.description.abstract
CO2 photocatalytic reduction is a potential and promising technology to reduce the level of the greenhouse gas in the atmosphere but also as an alternative and renewable fuel resource. However, the products yield of the reaction is still low and the identification of the optimal operating conditions that affect the process are still needed to be determined. This study investigates the impact of key operational parameters, specifically photocatalyst concentration and stirring speed, on the photocatalytic reduction of CO2 in a slurry batch photoreactor utilizing synthesized TiO2. A simplified photocatalytic kinetic model, incorporating the radiation field within the photoreactor, was developed, considering mass transfer from liquid to gas phase for the primary detected reaction products (CO, CH4, and H2). The proposed models elucidate the influence of different operating conditions on product yields. Stirring speed, controlled by a magnetic stirrer, impacts the gas–liquid mass transfer rate. Increased liquid phase stirring speed ensures faster species transport to the gas phase, with a diminishing effect beyond 900 rpm. TiO2 photocatalyst mass concentration influences the available total active surface and irradiation absorbance in the photoreactor volume. Optimal product yields were observed at the lowest tested photocatalyst concentration (0.5 g · L-1), indicating improved irradiation distribution and reduced particle agglomeration, resulting in higher available active surface for the reaction. The calculation model successfully predicted product yields even with lower photocatalyst concentration of 0.25 g · L-1, with marginal increases in predicted yields. These findings provide valuable insights for scaling up and optimizing the CO2 photocatalytic reduction process, offering a foundation for future research.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CO2 reduction  
dc.subject
Photocatalysis  
dc.subject
Mass transfer  
dc.subject
Kinetic study  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Exploring kinetics and mass transfer in photocatalytic CO2 reduction: Impact of photocatalyst loading and stirrer speed  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-10-01T16:05:54Z  
dc.journal.volume
23  
dc.journal.number
100651  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Ballari, Maria de Los Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Filip Edelmannová, Miroslava. Institute Of Environmental Technology; República Checa  
dc.description.fil
Fil: Ricka, Rudolf. Institute Of Environmental Technology; República Checa  
dc.description.fil
Fil: Reli, Martin. Institute Of Environmental Technology; República Checa  
dc.description.fil
Fil: Kocí, Kamila. Institute Of Environmental Technology; República Checa  
dc.journal.title
Energy Conversion and Management: X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2590174524001296  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.ecmx.2024.100651