Mostrar el registro sencillo del ítem
dc.contributor.author
Wang, Shurun
dc.contributor.author
Tang, Hao
dc.contributor.author
Himeno, Ryutaro
dc.contributor.author
Solé Casals, Jordi
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Han, Shuning
dc.contributor.author
Aoki, Shigeki
dc.contributor.author
Sun, Zhe
dc.date.available
2024-10-10T12:07:45Z
dc.date.issued
2024-09
dc.identifier.citation
Wang, Shurun; Tang, Hao; Himeno, Ryutaro; Solé Casals, Jordi; Caiafa, César Federico; et al.; Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms; Elsevier Ireland; Computer Methods And Programs In Biomedicine; 257; 9-2024; 108419, 1-28
dc.identifier.issn
0169-2607
dc.identifier.uri
http://hdl.handle.net/11336/245841
dc.description.abstract
Background and Objective:The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.Methods:This paper propose an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model’s predictions are both accurate and comprehensible.Results:The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.Conclusion:Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Ireland
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Graph Neural Network
dc.subject
Graph Neural Architecture Search
dc.subject
Evolutionary Algorithm
dc.subject
Squizophrenia
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-10-09T13:03:48Z
dc.journal.volume
257
dc.journal.pagination
108419, 1-28
dc.journal.pais
Irlanda
dc.description.fil
Fil: Wang, Shurun. Hefei University Of Technology; China
dc.description.fil
Fil: Tang, Hao. Hefei University Of Technology; China
dc.description.fil
Fil: Himeno, Ryutaro. Juntendo University; Japón
dc.description.fil
Fil: Solé Casals, Jordi. University of Vic; España
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Han, Shuning. ;
dc.description.fil
Fil: Aoki, Shigeki. Juntendo University; Japón
dc.description.fil
Fil: Sun, Zhe. Juntendo University; Japón
dc.journal.title
Computer Methods And Programs In Biomedicine
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0169260724004127
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cmpb.2024.108419
Archivos asociados