Artículo
Homogeneous spaces in Hartree-Fock-Bogoliubov theory
Fecha de publicación:
09/2024
Editorial:
Springer
Revista:
The Journal Of Geometric Analysis
ISSN:
1050-6926
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the action of Bogoliubov transformations on admissible generalized one-particle density matrices arising in Hartree-Fock-Bogoliubov theory. We show that the orbits of this action are reductive homogeneous spaces, and we give several equivalences that characterize when they are embedded submanifolds of natural ambient spaces. We use Lie theoretic arguments to prove that these orbits admit an invariant symplectic form. If, in addition, the operators in the orbits have finite spectrum, then we obtain that the orbits are actually Kahler homogeneous spaces.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Alvarado, Claudia Damaris; Chiumiento, Eduardo Hernan; Homogeneous spaces in Hartree-Fock-Bogoliubov theory; Springer; The Journal Of Geometric Analysis; 34; 334; 9-2024; 1-48
Compartir