Artículo
Degrees of irreducible morphisms and finite-representation type
Fecha de publicación:
08/2011
Editorial:
Oxford University Press
Revista:
Journal of the London Mathematical Society
ISSN:
0024-6107
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the degree of irreducible morphisms in any Auslander-Reiten component of a finite dimensional algebra over an algebraically closed field. We give a characterization for an irreducible morphism to have finite left (or right) degree in terms of the existence of certain annihilator maps. This is used to prove our main theorem: An algebra is of finite representation type if and only if for every indecomposable projective the inclusion of the radical in the projective has finite right degree, which is equivalent to requiring that for every indecomposable injective the epimorphism from the injective to its quotient by its socle has finite left degree. As an application of the techniques we develop, we study the behavior of the composite of paths of irreducible morphisms between indecomposable modules.
Palabras clave:
DEGREES
,
COVERING
,
COMPOSITION
,
FINITE REPRESENTATION TYPE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Chaio, Claudia Alicia; Le Meur, Patrick; Trepode, Sonia Elisabet; Degrees of irreducible morphisms and finite-representation type; Oxford University Press; Journal of the London Mathematical Society; 84; 1; 8-2011; 35-57
Compartir
Altmétricas