Mostrar el registro sencillo del ítem
dc.contributor.author
D'jorge, Agustina
dc.contributor.author
Sánchez, Ignacio Julián Rodolfo
dc.contributor.author
González, Alejandro Hernán
dc.contributor.other
Hernandez Vargas, Esteban Abelardo
dc.contributor.other
Velasco Hernández, Jorge X.
dc.date.available
2024-10-03T09:30:39Z
dc.date.issued
2023
dc.identifier.citation
D'jorge, Agustina; Sánchez, Ignacio Julián Rodolfo; González, Alejandro Hernán; Dynamical study of SARS-CoV-2 mathematical models under antiviral treatments; Elsevier; 2023; 261-286
dc.identifier.isbn
978-0-323-95064-0
dc.identifier.uri
http://hdl.handle.net/11336/245365
dc.description.abstract
Several target-cell models have been developed to describe and understand the spread of SARS-CoV-2 in thehost and the effectiveness of antiviral treatments. Although a proper dynamical characterization of such modelsplays a crucial role to classify every potential behavior of the controlled system, little attention has been paidto it. Concepts as the critical fraction of susceptible/non-infected cells (under which the infection can no longerincrease) can be fully understood and used in more general control objectives if put in terms of the equilibriumsets and their stability. In this work, a full characterization of the dynamical behavior of the target-cell modelsunder control actions is made. Based on the concept of virus spreadability, antiviral effectiveness thresholds aredetermined to establish whether or not a given treatment will be able to clear the infection without secondaryeffects. Also, it is shown how to simultaneously minimize the total fraction of infected cells while maintainingthe virus load under a given level, by means of an optimal control strategy. Several simulation results illustrate thepotential benefits of the proposal.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
IN-HOST SARS-COV-2 INFECTION MODEL
dc.subject
EQUILIBRIUM SETS CHARACTERIZATION
dc.subject
STABILITY ANALYSIS
dc.subject
OPTIMAL CONTROL
dc.subject
COVID-19
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Dynamical study of SARS-CoV-2 mathematical models under antiviral treatments
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2024-04-29T16:03:45Z
dc.journal.pagination
261-286
dc.journal.pais
Países Bajos
dc.description.fil
Fil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Sánchez, Ignacio Julián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-323-95064-0.00024-5
dc.conicet.paginas
320
dc.source.titulo
Mathematical Modelling, Simulations, and AI for Emergent Pandemic Diseases
Archivos asociados