Mostrar el registro sencillo del ítem

dc.contributor.author
D'jorge, Agustina  
dc.contributor.author
Sánchez, Ignacio Julián Rodolfo  
dc.contributor.author
González, Alejandro Hernán  
dc.contributor.other
Hernandez Vargas, Esteban Abelardo  
dc.contributor.other
Velasco Hernández, Jorge X.  
dc.date.available
2024-10-03T09:30:39Z  
dc.date.issued
2023  
dc.identifier.citation
D'jorge, Agustina; Sánchez, Ignacio Julián Rodolfo; González, Alejandro Hernán; Dynamical study of SARS-CoV-2 mathematical models under antiviral treatments; Elsevier; 2023; 261-286  
dc.identifier.isbn
978-0-323-95064-0  
dc.identifier.uri
http://hdl.handle.net/11336/245365  
dc.description.abstract
Several target-cell models have been developed to describe and understand the spread of SARS-CoV-2 in thehost and the effectiveness of antiviral treatments. Although a proper dynamical characterization of such modelsplays a crucial role to classify every potential behavior of the controlled system, little attention has been paidto it. Concepts as the critical fraction of susceptible/non-infected cells (under which the infection can no longerincrease) can be fully understood and used in more general control objectives if put in terms of the equilibriumsets and their stability. In this work, a full characterization of the dynamical behavior of the target-cell modelsunder control actions is made. Based on the concept of virus spreadability, antiviral effectiveness thresholds aredetermined to establish whether or not a given treatment will be able to clear the infection without secondaryeffects. Also, it is shown how to simultaneously minimize the total fraction of infected cells while maintainingthe virus load under a given level, by means of an optimal control strategy. Several simulation results illustrate thepotential benefits of the proposal.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
IN-HOST SARS-COV-2 INFECTION MODEL  
dc.subject
EQUILIBRIUM SETS CHARACTERIZATION  
dc.subject
STABILITY ANALYSIS  
dc.subject
OPTIMAL CONTROL  
dc.subject
COVID-19  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Dynamical study of SARS-CoV-2 mathematical models under antiviral treatments  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2024-04-29T16:03:45Z  
dc.journal.pagination
261-286  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Sánchez, Ignacio Julián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-323-95064-0.00024-5  
dc.conicet.paginas
320  
dc.source.titulo
Mathematical Modelling, Simulations, and AI for Emergent Pandemic Diseases