Mostrar el registro sencillo del ítem

dc.contributor.author
Martínez, Ernesto Carlos  
dc.contributor.author
Cristaldi, Mariano Daniel  
dc.contributor.author
Grau, Ricardo José Antonio  
dc.date.available
2017-09-18T20:23:40Z  
dc.date.issued
2009-03  
dc.identifier.citation
Martínez, Ernesto Carlos; Cristaldi, Mariano Daniel; Grau, Ricardo José Antonio; Design of dynamic experiments in modeling for optimization of batch processes; American Chemical Society; Industrial & Engineering Chemical Research; 48; 7; 3-2009; 3453-3465  
dc.identifier.issn
0888-5885  
dc.identifier.uri
http://hdl.handle.net/11336/24527  
dc.description.abstract
Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to speeding up the development of innovative products and processes. Modeling for optimization is proposed as a systematic approach to bias data gathering for iterative policy improvement through experimental design using first-principles models. Designing dynamic experiments that are optimally informative in order to reduce the uncertainty about the optimal operating conditions is addressed by integrating policy iteration based on the Hamilton-Jacobi-Bellman optimality equation with global sensitivity analysis. A conceptual framework for run-to-run convergence of a model-based policy iteration algorithm is proposed. Results obtained in the fed-batch fermentation of penicillin G are presented. The well-known Bajpai and Reuss bioreactor model validated with industrial data is used to increase on a run-to-run basis the amount of penicillin obtained by input policy optimization and selective (re)estimation of relevant model parameters. A remarkable improvement in productivity can be gain using a simple policy structure after only two modeling runs despite initial modeling uncertainty.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Dynamic Experiments  
dc.subject
Bioreactor  
dc.subject
Optimization  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Design of dynamic experiments in modeling for optimization of batch processes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-13T16:09:38Z  
dc.journal.volume
48  
dc.journal.number
7  
dc.journal.pagination
3453-3465  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Cristaldi, Mariano Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Industrial & Engineering Chemical Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/ie8000953  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie8000953