Mostrar el registro sencillo del ítem
dc.contributor.author
Lederman, Claudia Beatriz
dc.contributor.author
Wolanski, Noemi Irene
dc.date.available
2024-10-01T12:26:14Z
dc.date.issued
2010-06
dc.identifier.citation
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 189; 1; 6-2010; 25-46
dc.identifier.issn
0373-3114
dc.identifier.uri
http://hdl.handle.net/11336/245236
dc.description.abstract
In this paper we continue with our work in Lederman and Wolanski (Ann Math Pura Appl 187(2):197–220, 2008) where we developed a local monotonicity formula for solutions to an inhomogeneous singular perturbation problem of interest in combustion theory. There we proved local monotonicity formulae for solutions uε to the singular perturbation problem and for u = lim uε, assuming that both uε and u were defined in an arbitrary domain D in RN+1. In the present work we obtain global monotonicity formulae for limit functions u that are globally defined, while uε are not. We derive such global formulae from a local one that we prove here. In particular, we obtain a global monotonicity formula for blow up limits u0 of limit functions u that are not globally defined. As a consequence of this formula, we characterize blow up limits u0 in terms of the value of a density at the blow up point. We also present applications of the results in this paper to the study of the regularity of ∂{u > 0} (the flame front in combustion models). The fact that our results hold for the inhomogeneous singular perturbation problem allows a very wide applicability, for instance to problems with nonlocal diffusion and/or transport.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Heidelberg
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SINGULAR PERTURBATION PROBLEM
dc.subject
MONOTONICITY FORMULA
dc.subject
INHOMOGENEOUS PROBLEM
dc.subject
COMBUSTION
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A local monotonicity formula for an inhomogeneous singular perturbation problem and applications: Part II
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-09-03T13:18:00Z
dc.journal.volume
189
dc.journal.number
1
dc.journal.pagination
25-46
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Annali Di Matematica Pura Ed Applicata
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10231-009-0099-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-009-0099-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://mate.dm.uba.ar/~wolanski/papers/monoII.pdf
Archivos asociados