Mostrar el registro sencillo del ítem
dc.contributor.author
Aceña, Andrés Esteban
dc.contributor.author
Barranco, Juan
dc.contributor.author
Bernal, Argelia
dc.contributor.author
López, Ericson
dc.date.available
2024-09-27T09:51:51Z
dc.date.issued
2023-12
dc.identifier.citation
Aceña, Andrés Esteban; Barranco, Juan; Bernal, Argelia; López, Ericson; Thermodynamics sheds light on the nature of dark matter galactic halos; Cornell University; ArXiv.org; 2023; 12-2023; 1-7
dc.identifier.issn
2331-8422
dc.identifier.uri
http://hdl.handle.net/11336/245080
dc.description.abstract
Today it is understood that our universe would not be the same without dark matter, which apparently has given rise to the formation of galaxies, stars and planets. Its existence is inferred mainly from the gravitational effect on the rotation curves of stars in spiral galaxies. The nature of dark matter remains unknown. Here we show that the dark matter halo is in a state of Bose-Einstein condensation, or at least the central region is. By using fittings of observational data, we can put an upper bound on the dark matter particle mass in the order of 12 eV/c2. We present the temperature profiles of galactic dark matter halos by considering that dark matter can be treated as a classical ideal gas, as an ideal Fermi gas, or as an ideal Bose gas. The only free parameter in the matter model is the mass of the dark matter particle. We obtain the temperature profiles by using the rotational velocity profile proposed by Persic, Salucci, and Stel (1996) and assuming that the dark matter halo is a self-gravitating stand-alone structure. From the temperature profiles, we conclude that the classical ideal gas and the ideal Fermi gas are not viable explanations for dark matter, while the ideal Bose gas is if the mass of the particle is low enough. If we take into account the relationship presented by Kormendy and Freeman (2004, 2016), Donato et al. (2009) and Gentile et al. (2009) between central density and core radius then we conclude that the central temperature of dark matter in all galaxies is the same. Remarkably, our results imply that basics thermodynamics principles could shed light on the mysterious nature of dark matter and if this is the case, those principles have to been taken into account in its description.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cornell University
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DARK MATTER
dc.subject
GALACTIC HALO
dc.subject
THERMODYNAMICS
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Thermodynamics sheds light on the nature of dark matter galactic halos
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-08-26T10:58:00Z
dc.journal.volume
2023
dc.journal.pagination
1-7
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Aceña, Andrés Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
dc.description.fil
Fil: Barranco, Juan. Universidad de Guanajuato; México
dc.description.fil
Fil: Bernal, Argelia. Universidad de Guanajuato; México
dc.description.fil
Fil: López, Ericson. Escuela Politécnica Nacional; Ecuador
dc.journal.title
ArXiv.org
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2310.15795
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.48550/arXiv.2310.15795
Archivos asociados