Mostrar el registro sencillo del ítem

dc.contributor.author
Aceña, Andrés Esteban  
dc.contributor.author
Barranco, Juan  
dc.contributor.author
Bernal, Argelia  
dc.contributor.author
López, Ericson  
dc.date.available
2024-09-27T09:51:51Z  
dc.date.issued
2023-12  
dc.identifier.citation
Aceña, Andrés Esteban; Barranco, Juan; Bernal, Argelia; López, Ericson; Thermodynamics sheds light on the nature of dark matter galactic halos; Cornell University; ArXiv.org; 2023; 12-2023; 1-7  
dc.identifier.issn
2331-8422  
dc.identifier.uri
http://hdl.handle.net/11336/245080  
dc.description.abstract
Today it is understood that our universe would not be the same without dark matter, which apparently has given rise to the formation of galaxies, stars and planets. Its existence is inferred mainly from the gravitational effect on the rotation curves of stars in spiral galaxies. The nature of dark matter remains unknown. Here we show that the dark matter halo is in a state of Bose-Einstein condensation, or at least the central region is. By using fittings of observational data, we can put an upper bound on the dark matter particle mass in the order of 12 eV/c2. We present the temperature profiles of galactic dark matter halos by considering that dark matter can be treated as a classical ideal gas, as an ideal Fermi gas, or as an ideal Bose gas. The only free parameter in the matter model is the mass of the dark matter particle. We obtain the temperature profiles by using the rotational velocity profile proposed by Persic, Salucci, and Stel (1996) and assuming that the dark matter halo is a self-gravitating stand-alone structure. From the temperature profiles, we conclude that the classical ideal gas and the ideal Fermi gas are not viable explanations for dark matter, while the ideal Bose gas is if the mass of the particle is low enough. If we take into account the relationship presented by Kormendy and Freeman (2004, 2016), Donato et al. (2009) and Gentile et al. (2009) between central density and core radius then we conclude that the central temperature of dark matter in all galaxies is the same. Remarkably, our results imply that basics thermodynamics principles could shed light on the mysterious nature of dark matter and if this is the case, those principles have to been taken into account in its description.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cornell University  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DARK MATTER  
dc.subject
GALACTIC HALO  
dc.subject
THERMODYNAMICS  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Thermodynamics sheds light on the nature of dark matter galactic halos  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-08-26T10:58:00Z  
dc.journal.volume
2023  
dc.journal.pagination
1-7  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Aceña, Andrés Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina  
dc.description.fil
Fil: Barranco, Juan. Universidad de Guanajuato; México  
dc.description.fil
Fil: Bernal, Argelia. Universidad de Guanajuato; México  
dc.description.fil
Fil: López, Ericson. Escuela Politécnica Nacional; Ecuador  
dc.journal.title
ArXiv.org  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2310.15795  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.48550/arXiv.2310.15795