Mostrar el registro sencillo del ítem

dc.contributor.author
Fabregas, Ismael Oscar  
dc.contributor.author
Lamas, Diego Germán  
dc.contributor.author
Acuña, Leandro Marcelo  
dc.contributor.author
Walsoe, Noemi Elizabeth  
dc.contributor.author
Craievich, Aldo Felix  
dc.contributor.author
Fantini, M. C. A.  
dc.contributor.author
Prado, R. J.  
dc.date.available
2024-09-26T12:55:08Z  
dc.date.issued
2008-06  
dc.identifier.citation
Fabregas, Ismael Oscar; Lamas, Diego Germán; Acuña, Leandro Marcelo; Walsoe, Noemi Elizabeth; Craievich, Aldo Felix; et al.; Crystal structure and local order of nanocrystalline zirconia-based solid solutions; Cambridge University Press; Powder Diffraction; 23; S1; 6-2008; S46-S55  
dc.identifier.issn
0885-7156  
dc.identifier.uri
http://hdl.handle.net/11336/245044  
dc.description.abstract
Crystal and local structures long- and short-range order, respectively of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination spherelong- and short-range order, respectively of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphereXRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphereEXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cambridge University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SYNCHROTRON X-RAY DIFFRACTION  
dc.subject
EXAFS  
dc.subject
ZIRCONIA  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Crystal structure and local order of nanocrystalline zirconia-based solid solutions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-09-18T13:17:28Z  
dc.journal.volume
23  
dc.journal.number
S1  
dc.journal.pagination
S46-S55  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Fabregas, Ismael Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina  
dc.description.fil
Fil: Lamas, Diego Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina  
dc.description.fil
Fil: Acuña, Leandro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina  
dc.description.fil
Fil: Walsoe, Noemi Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina  
dc.description.fil
Fil: Craievich, Aldo Felix. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Fantini, M. C. A.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Prado, R. J.. Universidade Federal Do Mato Grosso;  
dc.journal.title
Powder Diffraction  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/powder-diffraction/article/abs/crystal-structure-and-local-order-of-nanocrystalline-zirconiabased-solid-solutions/03562956ACA0C38880B89697757661ED  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1154/1.2903503