Artículo
Sharp A1 Bounds for Calderón-Zygmund Operators and the Relationship with a Problem of Muckenhoupt and Wheeden
Fecha de publicación:
12/2008
Editorial:
Oxford University Press
Revista:
International Mathematics Research Notices
ISSN:
1073-7928
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For any Calderón–Zygmund operator T the following sharp estimate is obtained for 1 < p < ∞: formula where formula. In the case where p = 2 and T is a classical convolution singular integral, this result is due to R. Fefferman and J. Pipher [7]. Then, we deduce the following weak type (1, 1) estimate related to a problem of Muckenhoupt and Wheeden [11]: formula where w ∈ A1 and φ(t) = t(1 + log+t)(1 + log+ log+t).
Palabras clave:
singular integrals
,
weights
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Lerner, Andrei K.; Ombrosi, Sheldy Javier; Pérez, Carlos; Sharp A1 Bounds for Calderón-Zygmund Operators and the Relationship with a Problem of Muckenhoupt and Wheeden; Oxford University Press; International Mathematics Research Notices; 2008; 12-2008; 1222-1232
Compartir
Altmétricas