Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations

Moguilner, Sebastian; Baez, Sandra; Hernandez, Hernan; Migeot, Joaquín; Legaz, AgustinaIcon ; Gonzalez Gomez, Raul; Farina, Francesca R.; Prado, Pavel; Cuadros, Jhosmary; Tagliazucchi, Enzo RodolfoIcon ; Altschuler, FlorenciaIcon ; Maito, Marcelo Adrián; Godoy, María E.; Cruzat, Josephine; Valdes Sosa, Pedro A.; Lopera, Francisco; Ochoa Gómez, John Fredy; Gonzalez Hernandez, Alfredis; Bonilla Santos, Jasmin; Gonzalez Montealegre, Rodrigo A.; Anghinah, Renato; d’Almeida Manfrinati, Luís E.; Fittipaldi, Sol; Medel, Vicente; Olivares, Daniela; Yener, Görsev G.; Escudero, Javier; Babiloni, Claudio; Whelan, Robert; Güntekin, Bahar; Barttfeld, PabloIcon
Fecha de publicación: 08/2024
Editorial: Nature Publishing Group
Revista: Nature Medicine
ISSN: 1078-8956
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Anatomía y Morfología

Resumen

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (R² = 0.37, F² = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.
Palabras clave: Brain clocks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 10.62Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/244705
DOI: https://doi.org/10.1038/s41591-024-03209-x
URL: https://www.nature.com/articles/s41591-024-03209-x
Colecciones
Articulos (IIPSI)
Articulos de INSTITUTO DE INVESTIGACIONES PSICOLOGICAS
Citación
Moguilner, Sebastian; Baez, Sandra; Hernandez, Hernan; Migeot, Joaquín; Legaz, Agustina; et al.; Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations; Nature Publishing Group; Nature Medicine; 8-2024; 1-27
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES