Mostrar el registro sencillo del ítem
dc.contributor.author
Mininni, Camilo Juan
dc.contributor.author
Zanutto, Bonifacio Silvano
dc.date.available
2024-09-20T11:14:45Z
dc.date.issued
2024-08
dc.identifier.citation
Mininni, Camilo Juan; Zanutto, Bonifacio Silvano; Constructing neural networks with pre-specified dynamics; Nature; Scientific Reports; 14; 1; 8-2024; 1-20
dc.identifier.uri
http://hdl.handle.net/11336/244694
dc.description.abstract
A main goal in neuroscience is to understand the computations carried out by neural populations that give animals their cognitive skills. Neural network models allow to formulate explicit hypotheses regarding the algorithms instantiated in the dynamics of a neural population, its firing statistics, and the underlying connectivity. Neural networks can be defined by a small set of parameters, carefully chosen to procure specific capabilities, or by a large set of free parameters, fitted with optimization algorithms that minimize a given loss function. In this work we alternatively propose a method to make a detailed adjustment of the network dynamics and firing statistic to better answer questions that link dynamics, structure, and function. Our algorithm—termed generalised Firing-to-Parameter (gFTP)—provides a way to construct binary recurrent neural networks whose dynamics strictly follows a user pre-specified transition graph that details the transitions between population firing states triggered by stimulus presentations. Our main contribution is a procedure that detects when a transition graph is not realisable in terms of a neural network, and makes the necessary modifications in order to obtain a new transition graph that is realisable and preserves all the information encoded in the transitions of the original graph. With a realisable transition graph, gFTP assigns values to the network firing states associated with each node in the graph, and finds the synaptic weight matrices by solving a set of linear separation problems. We test gFTP performance by constructing networks with random dynamics, continuous attractor-like dynamics that encode position in 2-dimensional space, and discrete attractor dynamics. We then show how gFTP can be employed as a tool to explore the link between structure, function, and the algorithms instantiated in the network dynamics.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Nature
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
NEURAL NETWORKS
dc.subject
BRAIN DYNAMICS
dc.subject
MODELING METHODS
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Constructing neural networks with pre-specified dynamics
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-09-02T11:32:50Z
dc.identifier.eissn
2045-2322
dc.journal.volume
14
dc.journal.number
1
dc.journal.pagination
1-20
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Mininni, Camilo Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
dc.description.fil
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina
dc.journal.title
Scientific Reports
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-69747-z
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-024-69747-z
Archivos asociados