Mostrar el registro sencillo del ítem

dc.contributor.author
Palmero, Francisco  
dc.contributor.author
Hefley, Trevor J.  
dc.contributor.author
Lacasa, Josefina  
dc.contributor.author
Almeida, Luiz Felipe  
dc.contributor.author
Haro, Ricardo J.  
dc.contributor.author
Garcia, Fernando Oscar  
dc.contributor.author
Salvagiotti, Fernando  
dc.contributor.author
Ciampitti, Ignacio Antonio  
dc.date.available
2024-09-19T10:48:11Z  
dc.date.issued
2024-09  
dc.identifier.citation
Palmero, Francisco; Hefley, Trevor J.; Lacasa, Josefina; Almeida, Luiz Felipe; Haro, Ricardo J.; et al.; A Bayesian approach for estimating the uncertainty on the contribution of nitrogen fixation and calculation of nutrient balances in grain legumes; BioMed Central; Plant Methods; 20; 1; 9-2024; 1-14  
dc.identifier.issn
1746-4811  
dc.identifier.uri
http://hdl.handle.net/11336/244587  
dc.description.abstract
Background: The proportion of nitrogen (N) derived from the atmosphere (Ndfa) is a fundamental component of the plant N demand in legume species. To estimate the N benefit of grain legumes for the subsequent crop in the rotation, a simplified N balance is frequently used. This balance is calculated as the difference between fixed N and removed N by grains. The Ndfa needed to achieve a neutral N balance (hereafter ) is usually estimated through a simple linear regression model between Ndfa and N balance. This quantity is routinely estimated without accounting for the uncertainty in the estimate, which is needed to perform formal statistical inference about . In this article, we utilized a global database to describe the development of a novel Bayesian framework to quantify the uncertainty of . This study aimed to (i) develop a Bayesian framework to quantify the uncertainty of , and (ii) contrast the use of this Bayesian framework with the widely used delta and bootstrapping methods under different data availability scenarios. Results: The delta method, bootstrapping, and Bayesian inference provided nearly equivalent numerical values when the range of values for Ndfa was thoroughly explored during data collection (e.g., 6–91%), and the number of observations was relatively high (e.g., ). When the Ndfa tested was narrow and/or sample size was small, the delta method and bootstrapping provided confidence intervals containing biologically non-meaningful values (i.e. < 0% or > 100%). However, under a narrow Ndfa range and small sample size, the developed Bayesian inference framework obtained biologically meaningful values in the uncertainty estimation. Conclusion: In this study, we showed that the developed Bayesian framework was preferable under limited data conditions ─by using informative priors─ and when uncertainty estimation had to be constrained (regularized) to obtain meaningful inference. The presented Bayesian framework lays the foundation not only to conduct formal comparisons or hypothesis testing involving , but also to learn about its expected value, variance, and higher moments such as skewness and kurtosis under different agroecological and crop management conditions. This framework can also be transferred to estimate balances for other nutrients and/or field crops to gain knowledge on global crop nutrient balances.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
bayesian  
dc.subject
statistics  
dc.subject
biological nitrogen fixation  
dc.subject
nitrogen  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
A Bayesian approach for estimating the uncertainty on the contribution of nitrogen fixation and calculation of nutrient balances in grain legumes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-09-18T12:54:20Z  
dc.journal.volume
20  
dc.journal.number
1  
dc.journal.pagination
1-14  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Palmero, Francisco. Kansas State University; Estados Unidos  
dc.description.fil
Fil: Hefley, Trevor J.. Kansas State University; Estados Unidos  
dc.description.fil
Fil: Lacasa, Josefina. Kansas State University; Estados Unidos  
dc.description.fil
Fil: Almeida, Luiz Felipe. Kansas State University; Estados Unidos  
dc.description.fil
Fil: Haro, Ricardo J.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi; Argentina  
dc.description.fil
Fil: Garcia, Fernando Oscar. No especifíca;  
dc.description.fil
Fil: Salvagiotti, Fernando. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unidos  
dc.journal.title
Plant Methods  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://plantmethods.biomedcentral.com/articles/10.1186/s13007-024-01261-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s13007-024-01261-9